### Abstract

The Weyl semimetal surface is modeled by applying the Bogolyubov boundary conditions, in which the quasiparticles have an infinite Dirac mass outside the semimetal. For a Weyl semimetal shaped as a slab of finite thickness, we derive an exact spectral equation for the quasiparticle states and obtain the spectrum of the bulk as well as surface Fermi arc modes. We also show that, in the presence of the magnetic field, the separation between Weyl nodes in momentum space and the length of the Fermi arcs in the reciprocal space are affected by the interactions. As a result, we find that the period of oscillations of the density of states related to closed magnetic orbits involving Fermi arcs has a nontrivial dependence on the orientation of the magnetic field projection in the plane of the semimetal surface. We conclude that the momentum-space separation between Weyl nodes and its modification due the interaction effects in the magnetic field can be measured in the experimental studies of quantum oscillations.

Original language | English (US) |
---|---|

Article number | 115131 |

Journal | Physical Review B - Condensed Matter and Materials Physics |

Volume | 90 |

Issue number | 11 |

DOIs | |

State | Published - Sep 17 2014 |

### Fingerprint

### ASJC Scopus subject areas

- Condensed Matter Physics
- Electronic, Optical and Magnetic Materials

### Cite this

*Physical Review B - Condensed Matter and Materials Physics*,

*90*(11), [115131]. https://doi.org/10.1103/PhysRevB.90.115131

**Quantum oscillations as a probe of interaction effects in weyl semimetals in a magnetic field.** / Gorbar, E. V.; Miransky, V. A.; Shovkovy, Igor; Sukhachov, P. O.

Research output: Contribution to journal › Article

*Physical Review B - Condensed Matter and Materials Physics*, vol. 90, no. 11, 115131. https://doi.org/10.1103/PhysRevB.90.115131

}

TY - JOUR

T1 - Quantum oscillations as a probe of interaction effects in weyl semimetals in a magnetic field

AU - Gorbar, E. V.

AU - Miransky, V. A.

AU - Shovkovy, Igor

AU - Sukhachov, P. O.

PY - 2014/9/17

Y1 - 2014/9/17

N2 - The Weyl semimetal surface is modeled by applying the Bogolyubov boundary conditions, in which the quasiparticles have an infinite Dirac mass outside the semimetal. For a Weyl semimetal shaped as a slab of finite thickness, we derive an exact spectral equation for the quasiparticle states and obtain the spectrum of the bulk as well as surface Fermi arc modes. We also show that, in the presence of the magnetic field, the separation between Weyl nodes in momentum space and the length of the Fermi arcs in the reciprocal space are affected by the interactions. As a result, we find that the period of oscillations of the density of states related to closed magnetic orbits involving Fermi arcs has a nontrivial dependence on the orientation of the magnetic field projection in the plane of the semimetal surface. We conclude that the momentum-space separation between Weyl nodes and its modification due the interaction effects in the magnetic field can be measured in the experimental studies of quantum oscillations.

AB - The Weyl semimetal surface is modeled by applying the Bogolyubov boundary conditions, in which the quasiparticles have an infinite Dirac mass outside the semimetal. For a Weyl semimetal shaped as a slab of finite thickness, we derive an exact spectral equation for the quasiparticle states and obtain the spectrum of the bulk as well as surface Fermi arc modes. We also show that, in the presence of the magnetic field, the separation between Weyl nodes in momentum space and the length of the Fermi arcs in the reciprocal space are affected by the interactions. As a result, we find that the period of oscillations of the density of states related to closed magnetic orbits involving Fermi arcs has a nontrivial dependence on the orientation of the magnetic field projection in the plane of the semimetal surface. We conclude that the momentum-space separation between Weyl nodes and its modification due the interaction effects in the magnetic field can be measured in the experimental studies of quantum oscillations.

UR - http://www.scopus.com/inward/record.url?scp=84907228747&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84907228747&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.90.115131

DO - 10.1103/PhysRevB.90.115131

M3 - Article

AN - SCOPUS:84907228747

VL - 90

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 0163-1829

IS - 11

M1 - 115131

ER -