Quantum Mechanics of Gravitational Waves

Maulik Parikh, Frank Wilczek, George Zahariade

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to regard gravity as subject to the deterministic principles of classical physics, with the gravitational field obeying Newton's law or Einstein's equations. Here we treat the gravitational field as a quantum field and determine the implications of such treatment for experimental observables. We find that falling bodies in gravity are subject to random fluctuations ("noise") whose characteristics depend on the quantum state of the gravitational field. We derive a stochastic equation for the separation of two falling particles. Detection of this fundamental noise, which may be measurable at gravitational wave detectors, would vindicate the quantization of gravity, and reveal important properties of its sources.

Original languageEnglish (US)
Article number081602
JournalPhysical Review Letters
Volume127
Issue number8
DOIs
StatePublished - Aug 20 2021

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Quantum Mechanics of Gravitational Waves'. Together they form a unique fingerprint.

Cite this