Abstract

Recent years have witnessed significant interest in nanoscale physical systems, such as nanoelectromechanical and optomechanical systems, which can exhibit distinct collective dynamical behaviors, such as synchronization. As a parameter of the system changes, transition from one type of emerging collective behavior to another can occur. But what are the quantum manifestations of such a transition? We investigate a system of two optically coupled optomechanical cavities and uncover the phenomenon of transition from in-phase to antiphase synchronization. Quantum mechanically, we find that, associated with the classical transition, the entanglement measures between the various optical and mechanical degrees of freedom in the two cavities exhibit a change characteristic of second-order phase transition. These phenomena can be tested experimentally.

Original languageEnglish (US)
Article number053810
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume90
Issue number5
DOIs
StatePublished - Nov 5 2014

    Fingerprint

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this