Quantitative and qualitative comparison of low-temperature, heat-activated cooling systems

Y. Gupta, L. Metchop, T. Frantzis, Patrick Phelan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

This paper compares the quantitative and qualitative performances of three different heat-activated cooling systems, e.g. a silica-gel water adsorption system, a LiBr-H2O absorption system, and a desiccant air system. Each of these systems can be utilized at relatively low heat source temperatures, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation, etc. Each of these systems is assumed to work under the following operating conditions: a condensing temperature of 29 °C, an evaporating temperature of 19 °C, a hot water temperature range of 40-120 °C, and a hot water mass flow rate of 0.4 kg/sec. Individual mathematical models are developed for each system and numerically solved using different techniques. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW/°C is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica gel in adsorption and desiccant system and mass of LiBr-H2O solution in absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 °C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 °C, while the desiccant air system outperforms the others at temperatures above 90 °C.

Original languageEnglish (US)
Title of host publicationProceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Advanced Energy Systems Division
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)0791837904, 9780791837900
DOIs
StatePublished - Jan 1 2006
Event2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Chicago, IL, United States
Duration: Nov 5 2006Nov 10 2006

Publication series

NameAmerican Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES
ISSN (Print)1071-6947

Other

Other2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
CountryUnited States
CityChicago, IL
Period11/5/0611/10/06

ASJC Scopus subject areas

  • Mechanical Engineering
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Quantitative and qualitative comparison of low-temperature, heat-activated cooling systems'. Together they form a unique fingerprint.

  • Cite this

    Gupta, Y., Metchop, L., Frantzis, T., & Phelan, P. (2006). Quantitative and qualitative comparison of low-temperature, heat-activated cooling systems. In Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Advanced Energy Systems Division (American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2006-14489