Quantifying the extent of amide and peptide bond synthesis across conditions relevant to geologic and planetary environments

Kirtland J. Robinson, Christiana Bockisch, Ian R. Gould, Yiju Liao, Ziming Yang, Christopher R. Glein, Garrett D. Shaver, Hilairy E. Hartnett, Lynda B. Williams, Everett L. Shock

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Amide bonds are fundamental products in biochemistry, forming peptides critical to protein formation, but amide bonds are also detected in sterile environments and abiotic synthesis experiments. The abiotic formation of amide bonds may represent a prerequisite to the origin of life. Here we report thermodynamic models that predict optimal conditions for amide bond synthesis across geologically relevant ranges of temperature, pressure, and pH. We modeled acetamide formation from acetic acid and ammonia as a simple analog to peptide bond formation, and tested this model with hydrothermal experiments examining analogous reactions of amides including benzanilide and related structures. We also expanded predictions for optimizing diglycine formation, revealing that in addition to synthesis becoming more favorable at near-ambient pressures (Psat) with increasing temperatures, the strongest thermodynamic drive exists at extremely high pressures (>15,000 bar) and decreasing temperatures. Beyond implications for life's origins, the reactants and products involved in simple amide formation reactions can potentially be used as geochemical tracers for planetary exploration of environments that may be habitable.

Original languageEnglish (US)
Pages (from-to)318-332
Number of pages15
JournalGeochimica et Cosmochimica Acta
Volume300
DOIs
StatePublished - May 1 2021

Keywords

  • Enceladus
  • Hydrothermal experiments
  • Ocean worlds
  • Origin of life
  • Prebiotic

ASJC Scopus subject areas

  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Quantifying the extent of amide and peptide bond synthesis across conditions relevant to geologic and planetary environments'. Together they form a unique fingerprint.

Cite this