Quantifying the effect of buffer zones, crop areas and spatial aggregation on the externalities of genetically modified crops at landscape level

M. Graziano Ceddia, Mark Bartlett, Charles Perrings

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give farmers the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables' on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant 'policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed.

Original languageEnglish (US)
Pages (from-to)65-72
Number of pages8
JournalAgriculture, Ecosystems and Environment
Volume129
Issue number1-3
DOIs
StatePublished - Jan 2009

Fingerprint

buffer zone
buffers
crop
crops
coexistence
Brassica napus
elasticity
herbicide
European Union
genetically modified organisms
elasticity (mechanics)
growers
herbicides
policy
externality
effect
agricultural production
gene flow
crop models
pollen

Keywords

  • Brassica napus L.
  • Buffer areas
  • Coexistence
  • Monte Carlo experiment
  • Negative externalities
  • Pollen mediated gene flow
  • Spatial aggregation

ASJC Scopus subject areas

  • Agronomy and Crop Science
  • Animal Science and Zoology
  • Ecology

Cite this

@article{0aeb1ba318b148eb8de143fb50f5801c,
title = "Quantifying the effect of buffer zones, crop areas and spatial aggregation on the externalities of genetically modified crops at landscape level",
abstract = "The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give farmers the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables' on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant 'policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed.",
keywords = "Brassica napus L., Buffer areas, Coexistence, Monte Carlo experiment, Negative externalities, Pollen mediated gene flow, Spatial aggregation",
author = "Ceddia, {M. Graziano} and Mark Bartlett and Charles Perrings",
year = "2009",
month = "1",
doi = "10.1016/j.agee.2008.07.004",
language = "English (US)",
volume = "129",
pages = "65--72",
journal = "Agriculture, Ecosystems and Environment",
issn = "0167-8809",
publisher = "Elsevier",
number = "1-3",

}

TY - JOUR

T1 - Quantifying the effect of buffer zones, crop areas and spatial aggregation on the externalities of genetically modified crops at landscape level

AU - Ceddia, M. Graziano

AU - Bartlett, Mark

AU - Perrings, Charles

PY - 2009/1

Y1 - 2009/1

N2 - The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give farmers the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables' on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant 'policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed.

AB - The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give farmers the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables' on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant 'policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed.

KW - Brassica napus L.

KW - Buffer areas

KW - Coexistence

KW - Monte Carlo experiment

KW - Negative externalities

KW - Pollen mediated gene flow

KW - Spatial aggregation

UR - http://www.scopus.com/inward/record.url?scp=56449112912&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=56449112912&partnerID=8YFLogxK

U2 - 10.1016/j.agee.2008.07.004

DO - 10.1016/j.agee.2008.07.004

M3 - Article

AN - SCOPUS:56449112912

VL - 129

SP - 65

EP - 72

JO - Agriculture, Ecosystems and Environment

JF - Agriculture, Ecosystems and Environment

SN - 0167-8809

IS - 1-3

ER -