Proximity effects in nanoscale patterning with high resolution electron beam induced deposition

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Electron beam induced deposition can be used to deposit dots as small as 1 nm on planar substrates. However, more complex patterns composed of arrays of closely space dots may be distorted because of proximity effects arising from the fundamental nature of secondary electron generation. These proximity effects are investigated by exploring the visibility of nanoscale letters fabricated by dissociating a Pt organometallic precursor onto a Si3 N4 substrate. The pattern visibility and deposited mass distribution have been investigated for letters with widths of 5-20 nm. Letter visibility is very good down to 10 nm but the pattern is completely obscured by 5 nm. Moreover, the deposited mass distribution for 5 nm width letters bears almost no resemblance to the pattern traced by the primary electron beam. The mass distribution for the component dots employed here has a Lorentzian distribution with a full width at half maximum of 2.3 nm. The overlap in the tails of the Lorentzian contributes to a reduction in the visibility of the 10 nm sized letters. However, for patterns formed with dots separated by less than 2 nm, additional electrons are emitted from previously deposited nearby regions, substantially destroying the pattern for letters of width equal to 5 nm.

Original languageEnglish (US)
Pages (from-to)249-254
Number of pages6
JournalJournal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
Volume26
Issue number1
DOIs
StatePublished - 2008

Fingerprint

Visibility
Electron beams
electron beams
visibility
high resolution
mass distribution
Electrons
Organometallics
Substrates
Full width at half maximum
Deposits
bears
electrons
deposits

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Surfaces and Interfaces
  • Physics and Astronomy (miscellaneous)

Cite this

@article{bfedef3925424f6faf058f218db43198,
title = "Proximity effects in nanoscale patterning with high resolution electron beam induced deposition",
abstract = "Electron beam induced deposition can be used to deposit dots as small as 1 nm on planar substrates. However, more complex patterns composed of arrays of closely space dots may be distorted because of proximity effects arising from the fundamental nature of secondary electron generation. These proximity effects are investigated by exploring the visibility of nanoscale letters fabricated by dissociating a Pt organometallic precursor onto a Si3 N4 substrate. The pattern visibility and deposited mass distribution have been investigated for letters with widths of 5-20 nm. Letter visibility is very good down to 10 nm but the pattern is completely obscured by 5 nm. Moreover, the deposited mass distribution for 5 nm width letters bears almost no resemblance to the pattern traced by the primary electron beam. The mass distribution for the component dots employed here has a Lorentzian distribution with a full width at half maximum of 2.3 nm. The overlap in the tails of the Lorentzian contributes to a reduction in the visibility of the 10 nm sized letters. However, for patterns formed with dots separated by less than 2 nm, additional electrons are emitted from previously deposited nearby regions, substantially destroying the pattern for letters of width equal to 5 nm.",
author = "Peter Crozier",
year = "2008",
doi = "10.1116/1.2834560",
language = "English (US)",
volume = "26",
pages = "249--254",
journal = "Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena",
issn = "1071-1023",
publisher = "AVS Science and Technology Society",
number = "1",

}

TY - JOUR

T1 - Proximity effects in nanoscale patterning with high resolution electron beam induced deposition

AU - Crozier, Peter

PY - 2008

Y1 - 2008

N2 - Electron beam induced deposition can be used to deposit dots as small as 1 nm on planar substrates. However, more complex patterns composed of arrays of closely space dots may be distorted because of proximity effects arising from the fundamental nature of secondary electron generation. These proximity effects are investigated by exploring the visibility of nanoscale letters fabricated by dissociating a Pt organometallic precursor onto a Si3 N4 substrate. The pattern visibility and deposited mass distribution have been investigated for letters with widths of 5-20 nm. Letter visibility is very good down to 10 nm but the pattern is completely obscured by 5 nm. Moreover, the deposited mass distribution for 5 nm width letters bears almost no resemblance to the pattern traced by the primary electron beam. The mass distribution for the component dots employed here has a Lorentzian distribution with a full width at half maximum of 2.3 nm. The overlap in the tails of the Lorentzian contributes to a reduction in the visibility of the 10 nm sized letters. However, for patterns formed with dots separated by less than 2 nm, additional electrons are emitted from previously deposited nearby regions, substantially destroying the pattern for letters of width equal to 5 nm.

AB - Electron beam induced deposition can be used to deposit dots as small as 1 nm on planar substrates. However, more complex patterns composed of arrays of closely space dots may be distorted because of proximity effects arising from the fundamental nature of secondary electron generation. These proximity effects are investigated by exploring the visibility of nanoscale letters fabricated by dissociating a Pt organometallic precursor onto a Si3 N4 substrate. The pattern visibility and deposited mass distribution have been investigated for letters with widths of 5-20 nm. Letter visibility is very good down to 10 nm but the pattern is completely obscured by 5 nm. Moreover, the deposited mass distribution for 5 nm width letters bears almost no resemblance to the pattern traced by the primary electron beam. The mass distribution for the component dots employed here has a Lorentzian distribution with a full width at half maximum of 2.3 nm. The overlap in the tails of the Lorentzian contributes to a reduction in the visibility of the 10 nm sized letters. However, for patterns formed with dots separated by less than 2 nm, additional electrons are emitted from previously deposited nearby regions, substantially destroying the pattern for letters of width equal to 5 nm.

UR - http://www.scopus.com/inward/record.url?scp=38849178926&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38849178926&partnerID=8YFLogxK

U2 - 10.1116/1.2834560

DO - 10.1116/1.2834560

M3 - Article

VL - 26

SP - 249

EP - 254

JO - Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena

JF - Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena

SN - 1071-1023

IS - 1

ER -