Protein sequences bound to mineral surfaces persist into deep time

Beatrice Demarchi, Shaun Hall, Teresa Roncal-Herrero, Colin L. Freeman, Jos Woolley, Molly K. Crisp, Julie Wilson, Anna Fotakis, Roman Fischer, Benedikt M. Kessler, Rosa Rakownikow Jersie-Christensen, Jesper V. Olsen, James Haile, Jessica Thomas, Curtis Marean, John Parkington, Samantha Presslee, Julia Lee-Thorp, Peter Ditchfield, Jacqueline F. Hamilton & 16 others Martyn W. Ward, Chunting Michelle Wang, Marvin D. Shaw, Terry Harrison, Manuel Domínguez-Rodrigo, Ross D E Macphee, Amandus Kwekason, Michaela Ecker, Liora Kolska Horwitz, Michael Chazan, Roland Kroger, Jane Thomas-Oates, John H. Harding, Enrico Cappellini, Kirsty Penkman, Matthew J. Collins

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By trackingprotein diagenesis back in time we find consistent patterns of preservation, demonstratingauthenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

Original languageEnglish (US)
Article numbere17092
JournaleLife
Volume5
Issue numberSeptember
DOIs
StatePublished - Sep 27 2016

Fingerprint

Minerals
Struthioniformes
Egg Shell
Tanzania
Calcium Carbonate
Molecular Dynamics Simulation
Proteins
Hot Temperature
Binding energy
Peptides
Molecular dynamics
DNA
Computer simulation
Substrates
chorion proteins

ASJC Scopus subject areas

  • Neuroscience(all)
  • Medicine(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Demarchi, B., Hall, S., Roncal-Herrero, T., Freeman, C. L., Woolley, J., Crisp, M. K., ... Collins, M. J. (2016). Protein sequences bound to mineral surfaces persist into deep time. eLife, 5(September), [e17092]. https://doi.org/10.7554/eLife.17092

Protein sequences bound to mineral surfaces persist into deep time. / Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa; Freeman, Colin L.; Woolley, Jos; Crisp, Molly K.; Wilson, Julie; Fotakis, Anna; Fischer, Roman; Kessler, Benedikt M.; Jersie-Christensen, Rosa Rakownikow; Olsen, Jesper V.; Haile, James; Thomas, Jessica; Marean, Curtis; Parkington, John; Presslee, Samantha; Lee-Thorp, Julia; Ditchfield, Peter; Hamilton, Jacqueline F.; Ward, Martyn W.; Wang, Chunting Michelle; Shaw, Marvin D.; Harrison, Terry; Domínguez-Rodrigo, Manuel; Macphee, Ross D E; Kwekason, Amandus; Ecker, Michaela; Horwitz, Liora Kolska; Chazan, Michael; Kroger, Roland; Thomas-Oates, Jane; Harding, John H.; Cappellini, Enrico; Penkman, Kirsty; Collins, Matthew J.

In: eLife, Vol. 5, No. September, e17092, 27.09.2016.

Research output: Contribution to journalArticle

Demarchi, B, Hall, S, Roncal-Herrero, T, Freeman, CL, Woolley, J, Crisp, MK, Wilson, J, Fotakis, A, Fischer, R, Kessler, BM, Jersie-Christensen, RR, Olsen, JV, Haile, J, Thomas, J, Marean, C, Parkington, J, Presslee, S, Lee-Thorp, J, Ditchfield, P, Hamilton, JF, Ward, MW, Wang, CM, Shaw, MD, Harrison, T, Domínguez-Rodrigo, M, Macphee, RDE, Kwekason, A, Ecker, M, Horwitz, LK, Chazan, M, Kroger, R, Thomas-Oates, J, Harding, JH, Cappellini, E, Penkman, K & Collins, MJ 2016, 'Protein sequences bound to mineral surfaces persist into deep time', eLife, vol. 5, no. September, e17092. https://doi.org/10.7554/eLife.17092
Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J, Crisp MK et al. Protein sequences bound to mineral surfaces persist into deep time. eLife. 2016 Sep 27;5(September). e17092. https://doi.org/10.7554/eLife.17092
Demarchi, Beatrice ; Hall, Shaun ; Roncal-Herrero, Teresa ; Freeman, Colin L. ; Woolley, Jos ; Crisp, Molly K. ; Wilson, Julie ; Fotakis, Anna ; Fischer, Roman ; Kessler, Benedikt M. ; Jersie-Christensen, Rosa Rakownikow ; Olsen, Jesper V. ; Haile, James ; Thomas, Jessica ; Marean, Curtis ; Parkington, John ; Presslee, Samantha ; Lee-Thorp, Julia ; Ditchfield, Peter ; Hamilton, Jacqueline F. ; Ward, Martyn W. ; Wang, Chunting Michelle ; Shaw, Marvin D. ; Harrison, Terry ; Domínguez-Rodrigo, Manuel ; Macphee, Ross D E ; Kwekason, Amandus ; Ecker, Michaela ; Horwitz, Liora Kolska ; Chazan, Michael ; Kroger, Roland ; Thomas-Oates, Jane ; Harding, John H. ; Cappellini, Enrico ; Penkman, Kirsty ; Collins, Matthew J. / Protein sequences bound to mineral surfaces persist into deep time. In: eLife. 2016 ; Vol. 5, No. September.
@article{5a223e35ae1d4c0ab717e5885144a6ad,
title = "Protein sequences bound to mineral surfaces persist into deep time",
abstract = "Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By trackingprotein diagenesis back in time we find consistent patterns of preservation, demonstratingauthenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).",
author = "Beatrice Demarchi and Shaun Hall and Teresa Roncal-Herrero and Freeman, {Colin L.} and Jos Woolley and Crisp, {Molly K.} and Julie Wilson and Anna Fotakis and Roman Fischer and Kessler, {Benedikt M.} and Jersie-Christensen, {Rosa Rakownikow} and Olsen, {Jesper V.} and James Haile and Jessica Thomas and Curtis Marean and John Parkington and Samantha Presslee and Julia Lee-Thorp and Peter Ditchfield and Hamilton, {Jacqueline F.} and Ward, {Martyn W.} and Wang, {Chunting Michelle} and Shaw, {Marvin D.} and Terry Harrison and Manuel Dom{\'i}nguez-Rodrigo and Macphee, {Ross D E} and Amandus Kwekason and Michaela Ecker and Horwitz, {Liora Kolska} and Michael Chazan and Roland Kroger and Jane Thomas-Oates and Harding, {John H.} and Enrico Cappellini and Kirsty Penkman and Collins, {Matthew J.}",
year = "2016",
month = "9",
day = "27",
doi = "10.7554/eLife.17092",
language = "English (US)",
volume = "5",
journal = "eLife",
issn = "2050-084X",
publisher = "eLife Sciences Publications",
number = "September",

}

TY - JOUR

T1 - Protein sequences bound to mineral surfaces persist into deep time

AU - Demarchi, Beatrice

AU - Hall, Shaun

AU - Roncal-Herrero, Teresa

AU - Freeman, Colin L.

AU - Woolley, Jos

AU - Crisp, Molly K.

AU - Wilson, Julie

AU - Fotakis, Anna

AU - Fischer, Roman

AU - Kessler, Benedikt M.

AU - Jersie-Christensen, Rosa Rakownikow

AU - Olsen, Jesper V.

AU - Haile, James

AU - Thomas, Jessica

AU - Marean, Curtis

AU - Parkington, John

AU - Presslee, Samantha

AU - Lee-Thorp, Julia

AU - Ditchfield, Peter

AU - Hamilton, Jacqueline F.

AU - Ward, Martyn W.

AU - Wang, Chunting Michelle

AU - Shaw, Marvin D.

AU - Harrison, Terry

AU - Domínguez-Rodrigo, Manuel

AU - Macphee, Ross D E

AU - Kwekason, Amandus

AU - Ecker, Michaela

AU - Horwitz, Liora Kolska

AU - Chazan, Michael

AU - Kroger, Roland

AU - Thomas-Oates, Jane

AU - Harding, John H.

AU - Cappellini, Enrico

AU - Penkman, Kirsty

AU - Collins, Matthew J.

PY - 2016/9/27

Y1 - 2016/9/27

N2 - Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By trackingprotein diagenesis back in time we find consistent patterns of preservation, demonstratingauthenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

AB - Proteins persist longer in the fossil record than DNA, but the longevity, survival mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By trackingprotein diagenesis back in time we find consistent patterns of preservation, demonstratingauthenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant 10°C).

UR - http://www.scopus.com/inward/record.url?scp=84988893010&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84988893010&partnerID=8YFLogxK

U2 - 10.7554/eLife.17092

DO - 10.7554/eLife.17092

M3 - Article

VL - 5

JO - eLife

JF - eLife

SN - 2050-084X

IS - September

M1 - e17092

ER -