Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor

Chantale Charo, Vijaykumar Holla, Thiruvengadam Arumugam, Rosa Hwang, Peiying Yang, Raymond N. Dubois, David G. Menter, Craig D. Logsdon, Vijaya Ramachandran

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

OBJECTIVES: Pancreatic stellate cells are source of dense fibrotic stroma, a constant pathological feature of chronic pancreatitis and pancreatic adenocarcinoma. We observed correlation between levels of cyclooxygenase 2 (COX-2) and its product prostaglandin E2 (PGE2) and the extent of pancreatic fibrosis. The aims of this study were to delineate the effects of PGE2 on immortalized human pancreatic stellate cells (HPSCs) and to identify the receptor involved. METHODS: Immunohistochemistry, reverse transcription- polymerase chain reaction and quantitative reverse transcription-polymerase chain reaction were used to assess COX-2, extracellular matrix, and matrix metalloproteinase gene expression. Eicosanoid profile was determined by liquid chromatography-tandem mass spectrometry. Human pancreatic stellate cell proliferation was assessed by MTS assay, migration by Boyden chamber assay, and invasion using an invasion chamber. Transient silencing was obtained by small interfering RNA. RESULTS: Human pancreatic stellate cells express COX-2 and synthesize PGE2. Prostaglandin E2 stimulated HPSC proliferation, migration, and invasion and stimulated expression of both extracellular matrix and matrix metalloproteinase genes. Human pancreatic stellate cells expressed all 4 EP receptors. Only blocking the EP4 receptor resulted in abrogation of PGE2-mediated HPSC activation. Specificity of EP4 for the effects of PGE2 on stellate cells was confirmed using specific antagonists. CONCLUSIONS: Our data indicate that PGE2 regulates pancreatic stellate cell profibrotic activities via EP4 receptor, thus suggesting EP4 receptor as useful therapeutic target for pancreatic cancer to reduce desmoplasia.

Original languageEnglish (US)
Pages (from-to)467-474
Number of pages8
JournalPancreas
Volume42
Issue number3
DOIs
StatePublished - Apr 2013
Externally publishedYes

Keywords

  • EP4 receptor
  • PGE
  • Pancreatic cancer
  • Pancreatic stellate cells

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism
  • Hepatology
  • Endocrinology

Fingerprint

Dive into the research topics of 'Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor'. Together they form a unique fingerprint.

Cite this