Propensity Score Analysis With Missing Data

Heining Cham, Stephen West

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

Propensity score analysis is a method that equates treatment and control groups on a comprehensive set of measured confounders in observational (nonrandomized) studies. A successful propensity score analysis reduces bias in the estimate of the average treatment effect in a nonrandomized study, making the estimate more comparable with that obtained from a randomized experiment. This article reviews and discusses an important practical issue in propensity analysis, in which the baseline covariates (potential confounders) and the outcome have missing values (incompletely observed). We review the statistical theory of propensity score analysis and estimation methods for propensity scores with incompletely observed covariates. Traditional logistic regression and modern machine learning methods (e.g., random forests, generalized boosted modeling) as estimation methods for incompletely observed covariates are reviewed. Balance diagnostics and equating methods for incompletely observed covariates are briefly described. Using an empirical example, the propensity score estimation methods for incompletely observed covariates are illustrated and compared. (PsycINFO Database Record

Original languageEnglish (US)
JournalPsychological Methods
DOIs
StateAccepted/In press - Mar 10 2016

Keywords

  • Machine learning
  • Missing data
  • Nonrandomization
  • Propensity score

ASJC Scopus subject areas

  • Psychology (miscellaneous)

Fingerprint Dive into the research topics of 'Propensity Score Analysis With Missing Data'. Together they form a unique fingerprint.

Cite this