Production variability and categorical perception of vowels are strongly linked

Sara Ching Chao, Damaris Ochoa, Ayoub Daliri

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Theoretical models of speech production suggest that the speech motor system (SMS) uses auditory goals to determine errors in its auditory output during vowel production. This type of error calculation indicates that within-speaker production variability of a given vowel is related to the size of the vowel’s auditory goal. However, emerging evidence suggests that the SMS may also take into account perceptual knowledge of vowel categories (in addition to auditory goals) to estimate errors in auditory feedback. In this study, we examined how this mechanism influences within-speaker variability in vowel production. We conducted a study (n = 40 adults), consisting of a vowel categorization task and a vowel production task. The vowel categorization task was designed—based on participant-specific vowels—to estimate the categorical perceptual boundary (CPB) between two front vowels (/ε/and/æ/). Using the vowel production data of each participant, we calculated a variability-based boundary (VBB) located at the “center of mass” of the two vowels. The inverse of the standard deviation of a vowel distribution was used as the “mass” of the vowel. We found that: (a) categorical boundary was located farther from more variable vowels; and (b) the calculated VBB (i.e., the center of mass of the vowels) significantly and positively correlated with the estimated categorical boundary (r = 0.912 for formants calculated in hertz; r = 0.854 for formants calculated in bark). Overall, our findings support a view that vowel production and vowel perception are strongly and bidirectionally linked.

Original languageEnglish (US)
Article number96
JournalFrontiers in Human Neuroscience
Volume13
DOIs
StatePublished - Feb 1 2019

Fingerprint

Theoretical Models

Keywords

  • Perception
  • Speech
  • Speech motor control
  • Variability
  • Vowels

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Cite this

Production variability and categorical perception of vowels are strongly linked. / Chao, Sara Ching; Ochoa, Damaris; Daliri, Ayoub.

In: Frontiers in Human Neuroscience, Vol. 13, 96, 01.02.2019.

Research output: Contribution to journalArticle

@article{e64a8e45561448bc8a0fb66c0f5c95c4,
title = "Production variability and categorical perception of vowels are strongly linked",
abstract = "Theoretical models of speech production suggest that the speech motor system (SMS) uses auditory goals to determine errors in its auditory output during vowel production. This type of error calculation indicates that within-speaker production variability of a given vowel is related to the size of the vowel’s auditory goal. However, emerging evidence suggests that the SMS may also take into account perceptual knowledge of vowel categories (in addition to auditory goals) to estimate errors in auditory feedback. In this study, we examined how this mechanism influences within-speaker variability in vowel production. We conducted a study (n = 40 adults), consisting of a vowel categorization task and a vowel production task. The vowel categorization task was designed—based on participant-specific vowels—to estimate the categorical perceptual boundary (CPB) between two front vowels (/ε/and/{\ae}/). Using the vowel production data of each participant, we calculated a variability-based boundary (VBB) located at the “center of mass” of the two vowels. The inverse of the standard deviation of a vowel distribution was used as the “mass” of the vowel. We found that: (a) categorical boundary was located farther from more variable vowels; and (b) the calculated VBB (i.e., the center of mass of the vowels) significantly and positively correlated with the estimated categorical boundary (r = 0.912 for formants calculated in hertz; r = 0.854 for formants calculated in bark). Overall, our findings support a view that vowel production and vowel perception are strongly and bidirectionally linked.",
keywords = "Perception, Speech, Speech motor control, Variability, Vowels",
author = "Chao, {Sara Ching} and Damaris Ochoa and Ayoub Daliri",
year = "2019",
month = "2",
day = "1",
doi = "10.3389/fnhum.2019.00096",
language = "English (US)",
volume = "13",
journal = "Frontiers in Human Neuroscience",
issn = "1662-5161",
publisher = "Frontiers Research Foundation",

}

TY - JOUR

T1 - Production variability and categorical perception of vowels are strongly linked

AU - Chao, Sara Ching

AU - Ochoa, Damaris

AU - Daliri, Ayoub

PY - 2019/2/1

Y1 - 2019/2/1

N2 - Theoretical models of speech production suggest that the speech motor system (SMS) uses auditory goals to determine errors in its auditory output during vowel production. This type of error calculation indicates that within-speaker production variability of a given vowel is related to the size of the vowel’s auditory goal. However, emerging evidence suggests that the SMS may also take into account perceptual knowledge of vowel categories (in addition to auditory goals) to estimate errors in auditory feedback. In this study, we examined how this mechanism influences within-speaker variability in vowel production. We conducted a study (n = 40 adults), consisting of a vowel categorization task and a vowel production task. The vowel categorization task was designed—based on participant-specific vowels—to estimate the categorical perceptual boundary (CPB) between two front vowels (/ε/and/æ/). Using the vowel production data of each participant, we calculated a variability-based boundary (VBB) located at the “center of mass” of the two vowels. The inverse of the standard deviation of a vowel distribution was used as the “mass” of the vowel. We found that: (a) categorical boundary was located farther from more variable vowels; and (b) the calculated VBB (i.e., the center of mass of the vowels) significantly and positively correlated with the estimated categorical boundary (r = 0.912 for formants calculated in hertz; r = 0.854 for formants calculated in bark). Overall, our findings support a view that vowel production and vowel perception are strongly and bidirectionally linked.

AB - Theoretical models of speech production suggest that the speech motor system (SMS) uses auditory goals to determine errors in its auditory output during vowel production. This type of error calculation indicates that within-speaker production variability of a given vowel is related to the size of the vowel’s auditory goal. However, emerging evidence suggests that the SMS may also take into account perceptual knowledge of vowel categories (in addition to auditory goals) to estimate errors in auditory feedback. In this study, we examined how this mechanism influences within-speaker variability in vowel production. We conducted a study (n = 40 adults), consisting of a vowel categorization task and a vowel production task. The vowel categorization task was designed—based on participant-specific vowels—to estimate the categorical perceptual boundary (CPB) between two front vowels (/ε/and/æ/). Using the vowel production data of each participant, we calculated a variability-based boundary (VBB) located at the “center of mass” of the two vowels. The inverse of the standard deviation of a vowel distribution was used as the “mass” of the vowel. We found that: (a) categorical boundary was located farther from more variable vowels; and (b) the calculated VBB (i.e., the center of mass of the vowels) significantly and positively correlated with the estimated categorical boundary (r = 0.912 for formants calculated in hertz; r = 0.854 for formants calculated in bark). Overall, our findings support a view that vowel production and vowel perception are strongly and bidirectionally linked.

KW - Perception

KW - Speech

KW - Speech motor control

KW - Variability

KW - Vowels

UR - http://www.scopus.com/inward/record.url?scp=85069444219&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069444219&partnerID=8YFLogxK

U2 - 10.3389/fnhum.2019.00096

DO - 10.3389/fnhum.2019.00096

M3 - Article

VL - 13

JO - Frontiers in Human Neuroscience

JF - Frontiers in Human Neuroscience

SN - 1662-5161

M1 - 96

ER -