Production of igg fusion proteins transiently expressed in nicotiana benthamiana

Aigerim S. Kamzina, Michelle P. Dipalma, Joseph G.L. Hunter, Andrew G. Diamos, Boyd Armer, Tsafrir S. Mor, Hugh S. Mason

Research output: Contribution to journalArticlepeer-review

Abstract

High demand for antibodies as therapeutic interventions for various infectious, metabolic, autoimmune, neoplastic, and other diseases creates a growing need in developing efficient methods for recombinant antibody production. As of 2019, there were more than 70 FDA-approved monoclonal antibodies, and there is exponential growth potential. Despite their promise, limiting factors for widespread use are manufacturing costs and complexity. Potentially, plants offer low-cost, safe, and easily scalable protein manufacturing strategies. Plants like Nicotiana benthamiana not only can correctly fold and assemble complex mammalian proteins but also can add critical post-translational modifications similar to those offered by mammalian cell cultures. In this work, by using native GFP and an acid-stable variant of green fluorescent protein (GFP) fused to human monoclonal antibodies, we were able to visualize the entire transient antibody expression and purification process from N. benthamiana plants. Depending on the experiment's purpose, native GFP fusion can ensure easier visualization during the expression phase in the plants, while acid-stable GFP fusion allows for visualization during downstream processing. This scalable and straightforward procedure can be performed by a single researcher to produce milligram quantities of highly pure antibody or antibody fusion proteins in a matter of days using only a few small plants. Such a technique can be extended to the visualization of any type of antibody purification process and potentially many other proteins, both in plant and other expression systems. Moreover, these techniques can benefit virtual instructions and be executed in a teaching laboratory by undergraduate students possessing minimal prior experience with molecular biology techniques, providing a foundation for project-based exploration with real-world applications.

Original languageEnglish (US)
Article numbere61774
Pages (from-to)1-24
Number of pages24
JournalJournal of Visualized Experiments
Volume2021
Issue number167
DOIs
StatePublished - Jan 2021

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Production of igg fusion proteins transiently expressed in nicotiana benthamiana'. Together they form a unique fingerprint.

Cite this