Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis

Dewey Magee, D. M. Williams, E. J. Wing, C. A. Bleicker, J. Schachter

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The colony-stimulating factors (CSFs) are cytokines involved in the production, differentiation, and activation of host phagocytes. During murine infection with Chlamydia trachomatis (MoPn), plasma CSF levels increased in euthymic (nu/+) and athymic (nu/nu) BALB/c mice. Levels declined later in infection, with the nu/+ mice resolving the infection but the nu/nu mice succumbing by day 16. Either live or heat-killed Chlamydia organisms could induce CSF increases on day 7 postchallenge in nu/+ mice; however, by day 14, only mice challenged with live organisms maintained high plasma levels. CSFs were also produced by spleen cells of nu/+ and nu/nu mice in response to Chlamydia antigen. Spleen cell CSF production was detectable by days 3 to 5 postinfection. In nu/+ mice, spleen cell CSF production was elevated throughout the rest of the time course but in nu/nu mice fell significantly at day 14. Like the plasma CSF activity (CSA) production, spleen cell CSA production on day 7 was seen in mice challenged with either live or heat-killed Chlamydia organisms, but on day 14 only nu/+ mice challenged with live organisms maintained significant CSA production. To further characterize the T-cell dependence of CSA production, spleen cells of nu/+ mice were depleted of T cells or T-cell subsets before producing supernatants. On day 14 postinfection, the CD4+ lymphocyte was the major producer of CSFs. Additionally, there were different types of CSFs secreted by nu/+ and nu/nu mice as determined by the ability of spleen cell supernatants to support the granulocyte-macrophage CSF/interleukin 3-dependent cell line FDCP-1. Supernatants from nu/+ mice had 4 to 8 times the level of FDCP-1 CSF activity of the supernatants from nu/nu mice. These results support the evidence that nu/+ mice were producing some CSFs by T-cell-dependent mechanisms. This is the first report of CSF production in vivo during Chlamydia infection. Furthermore, we show that CSFs are produced by both T-cell-dependent and T-cell-independent mechanisms. The capacity of the CSFs to increase the production and effector function of phagocytes may be important to host defenses.

Original languageEnglish (US)
Pages (from-to)2370-2375
Number of pages6
JournalInfection and Immunity
Volume59
Issue number7
StatePublished - 1991
Externally publishedYes

Fingerprint

Colony-Stimulating Factors
Chlamydia trachomatis
Pneumonia
Spleen
Chlamydia
T-Lymphocytes
Phagocytes
Hot Temperature
Infection
Chlamydia Infections
Macrophage Colony-Stimulating Factor
Interleukin-3
T-Lymphocyte Subsets
Granulocyte-Macrophage Colony-Stimulating Factor

ASJC Scopus subject areas

  • Immunology

Cite this

Magee, D., Williams, D. M., Wing, E. J., Bleicker, C. A., & Schachter, J. (1991). Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis. Infection and Immunity, 59(7), 2370-2375.

Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis. / Magee, Dewey; Williams, D. M.; Wing, E. J.; Bleicker, C. A.; Schachter, J.

In: Infection and Immunity, Vol. 59, No. 7, 1991, p. 2370-2375.

Research output: Contribution to journalArticle

Magee, D, Williams, DM, Wing, EJ, Bleicker, CA & Schachter, J 1991, 'Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis', Infection and Immunity, vol. 59, no. 7, pp. 2370-2375.
Magee, Dewey ; Williams, D. M. ; Wing, E. J. ; Bleicker, C. A. ; Schachter, J. / Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis. In: Infection and Immunity. 1991 ; Vol. 59, No. 7. pp. 2370-2375.
@article{4f24f3e0ab00467caee42d91eb05a7be,
title = "Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis",
abstract = "The colony-stimulating factors (CSFs) are cytokines involved in the production, differentiation, and activation of host phagocytes. During murine infection with Chlamydia trachomatis (MoPn), plasma CSF levels increased in euthymic (nu/+) and athymic (nu/nu) BALB/c mice. Levels declined later in infection, with the nu/+ mice resolving the infection but the nu/nu mice succumbing by day 16. Either live or heat-killed Chlamydia organisms could induce CSF increases on day 7 postchallenge in nu/+ mice; however, by day 14, only mice challenged with live organisms maintained high plasma levels. CSFs were also produced by spleen cells of nu/+ and nu/nu mice in response to Chlamydia antigen. Spleen cell CSF production was detectable by days 3 to 5 postinfection. In nu/+ mice, spleen cell CSF production was elevated throughout the rest of the time course but in nu/nu mice fell significantly at day 14. Like the plasma CSF activity (CSA) production, spleen cell CSA production on day 7 was seen in mice challenged with either live or heat-killed Chlamydia organisms, but on day 14 only nu/+ mice challenged with live organisms maintained significant CSA production. To further characterize the T-cell dependence of CSA production, spleen cells of nu/+ mice were depleted of T cells or T-cell subsets before producing supernatants. On day 14 postinfection, the CD4+ lymphocyte was the major producer of CSFs. Additionally, there were different types of CSFs secreted by nu/+ and nu/nu mice as determined by the ability of spleen cell supernatants to support the granulocyte-macrophage CSF/interleukin 3-dependent cell line FDCP-1. Supernatants from nu/+ mice had 4 to 8 times the level of FDCP-1 CSF activity of the supernatants from nu/nu mice. These results support the evidence that nu/+ mice were producing some CSFs by T-cell-dependent mechanisms. This is the first report of CSF production in vivo during Chlamydia infection. Furthermore, we show that CSFs are produced by both T-cell-dependent and T-cell-independent mechanisms. The capacity of the CSFs to increase the production and effector function of phagocytes may be important to host defenses.",
author = "Dewey Magee and Williams, {D. M.} and Wing, {E. J.} and Bleicker, {C. A.} and J. Schachter",
year = "1991",
language = "English (US)",
volume = "59",
pages = "2370--2375",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "7",

}

TY - JOUR

T1 - Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis

AU - Magee, Dewey

AU - Williams, D. M.

AU - Wing, E. J.

AU - Bleicker, C. A.

AU - Schachter, J.

PY - 1991

Y1 - 1991

N2 - The colony-stimulating factors (CSFs) are cytokines involved in the production, differentiation, and activation of host phagocytes. During murine infection with Chlamydia trachomatis (MoPn), plasma CSF levels increased in euthymic (nu/+) and athymic (nu/nu) BALB/c mice. Levels declined later in infection, with the nu/+ mice resolving the infection but the nu/nu mice succumbing by day 16. Either live or heat-killed Chlamydia organisms could induce CSF increases on day 7 postchallenge in nu/+ mice; however, by day 14, only mice challenged with live organisms maintained high plasma levels. CSFs were also produced by spleen cells of nu/+ and nu/nu mice in response to Chlamydia antigen. Spleen cell CSF production was detectable by days 3 to 5 postinfection. In nu/+ mice, spleen cell CSF production was elevated throughout the rest of the time course but in nu/nu mice fell significantly at day 14. Like the plasma CSF activity (CSA) production, spleen cell CSA production on day 7 was seen in mice challenged with either live or heat-killed Chlamydia organisms, but on day 14 only nu/+ mice challenged with live organisms maintained significant CSA production. To further characterize the T-cell dependence of CSA production, spleen cells of nu/+ mice were depleted of T cells or T-cell subsets before producing supernatants. On day 14 postinfection, the CD4+ lymphocyte was the major producer of CSFs. Additionally, there were different types of CSFs secreted by nu/+ and nu/nu mice as determined by the ability of spleen cell supernatants to support the granulocyte-macrophage CSF/interleukin 3-dependent cell line FDCP-1. Supernatants from nu/+ mice had 4 to 8 times the level of FDCP-1 CSF activity of the supernatants from nu/nu mice. These results support the evidence that nu/+ mice were producing some CSFs by T-cell-dependent mechanisms. This is the first report of CSF production in vivo during Chlamydia infection. Furthermore, we show that CSFs are produced by both T-cell-dependent and T-cell-independent mechanisms. The capacity of the CSFs to increase the production and effector function of phagocytes may be important to host defenses.

AB - The colony-stimulating factors (CSFs) are cytokines involved in the production, differentiation, and activation of host phagocytes. During murine infection with Chlamydia trachomatis (MoPn), plasma CSF levels increased in euthymic (nu/+) and athymic (nu/nu) BALB/c mice. Levels declined later in infection, with the nu/+ mice resolving the infection but the nu/nu mice succumbing by day 16. Either live or heat-killed Chlamydia organisms could induce CSF increases on day 7 postchallenge in nu/+ mice; however, by day 14, only mice challenged with live organisms maintained high plasma levels. CSFs were also produced by spleen cells of nu/+ and nu/nu mice in response to Chlamydia antigen. Spleen cell CSF production was detectable by days 3 to 5 postinfection. In nu/+ mice, spleen cell CSF production was elevated throughout the rest of the time course but in nu/nu mice fell significantly at day 14. Like the plasma CSF activity (CSA) production, spleen cell CSA production on day 7 was seen in mice challenged with either live or heat-killed Chlamydia organisms, but on day 14 only nu/+ mice challenged with live organisms maintained significant CSA production. To further characterize the T-cell dependence of CSA production, spleen cells of nu/+ mice were depleted of T cells or T-cell subsets before producing supernatants. On day 14 postinfection, the CD4+ lymphocyte was the major producer of CSFs. Additionally, there were different types of CSFs secreted by nu/+ and nu/nu mice as determined by the ability of spleen cell supernatants to support the granulocyte-macrophage CSF/interleukin 3-dependent cell line FDCP-1. Supernatants from nu/+ mice had 4 to 8 times the level of FDCP-1 CSF activity of the supernatants from nu/nu mice. These results support the evidence that nu/+ mice were producing some CSFs by T-cell-dependent mechanisms. This is the first report of CSF production in vivo during Chlamydia infection. Furthermore, we show that CSFs are produced by both T-cell-dependent and T-cell-independent mechanisms. The capacity of the CSFs to increase the production and effector function of phagocytes may be important to host defenses.

UR - http://www.scopus.com/inward/record.url?scp=0025851288&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025851288&partnerID=8YFLogxK

M3 - Article

C2 - 1828791

AN - SCOPUS:0025851288

VL - 59

SP - 2370

EP - 2375

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 7

ER -