TY - JOUR
T1 - Probing information content of hierarchical n -point polytope functions for quantifying and reconstructing disordered systems
AU - Chen, Pei En
AU - Xu, Wenxiang
AU - Ren, Yi
AU - Jiao, Yang
N1 - Funding Information:
This work is supported by American Chemical Society Petroleum Research Fund under Grant No. 56474-DNI10 (Program manager: Dr. Burtrand Lee).
Publisher Copyright:
© 2020 American Physical Society.
PY - 2020/7
Y1 - 2020/7
N2 - Disordered systems are ubiquitous in physical, biological, and material sciences. Examples include liquid and glassy states of condensed matter, colloids, granular materials, porous media, composites, alloys, packings of cells in avian retina, and tumor spheroids, to name but a few. A comprehensive understanding of such disordered systems requires, as the first step, systematic quantification, modeling, and representation of the underlying complex configurations and microstructure, which is generally very challenging to achieve. Recently, we introduced a set of hierarchical statistical microstructural descriptors, i.e., the "n-point polytope functions"Pn, which are derived from the standard n-point correlation functions Sn, and successively included higher-order n-point statistics of the morphological features of interest in a concise, explainable, and expressive manner. Here we investigate the information content of the Pn functions via optimization-based realization rendering. This is achieved by successively incorporating higher-order Pn functions up to n=8 and quantitatively assessing the accuracy of the reconstructed systems via unconstrained statistical morphological descriptors (e.g., the lineal-path function). We examine a wide spectrum of representative random systems with distinct geometrical and topological features. We find that, generally, successively incorporating higher-order Pn functions and, thus, the higher-order morphological information encoded in these descriptors leads to superior accuracy of the reconstructions. However, incorporating more Pn functions into the reconstruction also significantly increases the complexity and roughness of the associated energy landscape for the underlying stochastic optimization, making it difficult to convergence numerically.
AB - Disordered systems are ubiquitous in physical, biological, and material sciences. Examples include liquid and glassy states of condensed matter, colloids, granular materials, porous media, composites, alloys, packings of cells in avian retina, and tumor spheroids, to name but a few. A comprehensive understanding of such disordered systems requires, as the first step, systematic quantification, modeling, and representation of the underlying complex configurations and microstructure, which is generally very challenging to achieve. Recently, we introduced a set of hierarchical statistical microstructural descriptors, i.e., the "n-point polytope functions"Pn, which are derived from the standard n-point correlation functions Sn, and successively included higher-order n-point statistics of the morphological features of interest in a concise, explainable, and expressive manner. Here we investigate the information content of the Pn functions via optimization-based realization rendering. This is achieved by successively incorporating higher-order Pn functions up to n=8 and quantitatively assessing the accuracy of the reconstructed systems via unconstrained statistical morphological descriptors (e.g., the lineal-path function). We examine a wide spectrum of representative random systems with distinct geometrical and topological features. We find that, generally, successively incorporating higher-order Pn functions and, thus, the higher-order morphological information encoded in these descriptors leads to superior accuracy of the reconstructions. However, incorporating more Pn functions into the reconstruction also significantly increases the complexity and roughness of the associated energy landscape for the underlying stochastic optimization, making it difficult to convergence numerically.
UR - http://www.scopus.com/inward/record.url?scp=85089520211&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089520211&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.102.013305
DO - 10.1103/PhysRevE.102.013305
M3 - Article
C2 - 32794921
AN - SCOPUS:85089520211
SN - 1539-3755
VL - 102
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 1
M1 - 013305
ER -