Premethylation of DNA for transformation of Synechocystis sp. PCC 6803

Deirdre Meldrum (Inventor)

Research output: Patent

Abstract

Cyanobacteria are model species for studying photosynthesis and recently have been gaining increased attention for their ability to produce renewable fuels and chemicals by harvesting solar energy and recycling carbon dioxide. Unfortunately, despite all the recent research and exciting achievements made regarding cyanobacteria, genetic transformation efficiency is still low, much lower than other species such as E. coli and yeast. This presents a significant barrier to harnessing this type of microorganism. In order for cyanobacteria to compete as a model system for producing useful products, new strategies to enhance the transformation efficiency are needed. Researchers at the Biodesign Institute have developed novel methods to increase the transformation efficiency of cyanobacteria by 161-fold. Our researchers have found that pre-methylation of foreign DNA, by certain methylase genes, increases the integrative transformation efficiency of cyanobacteria and does not pose any change to the host genetic background. This technology could be used to create a novel and useful commercial kit for high-efficiency transformation of cyanobacteria. This method provides for transformation efficiency increases in cyanobacteria by more than two orders of magnitude and can be further combined with other optimization strategies to bring about even greater efficiency increases. This could make the use of cyanobacteria for production of useful compounds highly attractive. Potential Applications ?Increased transformation efficiency of Cyanobacteria ?Production of renewable fuels ?Production of chemicals (agrochemicals, specialty chemicals, etc.) ?Production of biodegradable plastics ?Production of human and animal supplements ?Production of therapeutics ?Production of cosmetics Benefits and Advantages ?161-fold increase in transformation efficiency ?Two orders of magnitude higher transformation efficiency was achieved ?Can be combined with other optimization strategies to further increase efficiency ?Does not affect the host genetic background Download Original PDF For more information about the inventor(s) and their research, please see Dr. Meldrum's directory webpage
Original languageEnglish (US)
StatePublished - Apr 21 2014

Fingerprint

cyanobacterium
DNA
fold
directory
agrochemical
methylation
yeast
photosynthesis
recycling
carbon dioxide
microorganism
plastic
gene
animal
chemical

Cite this

@misc{dd2c7c05271848b684b8652113020c09,
title = "Premethylation of DNA for transformation of Synechocystis sp. PCC 6803",
abstract = "Cyanobacteria are model species for studying photosynthesis and recently have been gaining increased attention for their ability to produce renewable fuels and chemicals by harvesting solar energy and recycling carbon dioxide. Unfortunately, despite all the recent research and exciting achievements made regarding cyanobacteria, genetic transformation efficiency is still low, much lower than other species such as E. coli and yeast. This presents a significant barrier to harnessing this type of microorganism. In order for cyanobacteria to compete as a model system for producing useful products, new strategies to enhance the transformation efficiency are needed. Researchers at the Biodesign Institute have developed novel methods to increase the transformation efficiency of cyanobacteria by 161-fold. Our researchers have found that pre-methylation of foreign DNA, by certain methylase genes, increases the integrative transformation efficiency of cyanobacteria and does not pose any change to the host genetic background. This technology could be used to create a novel and useful commercial kit for high-efficiency transformation of cyanobacteria. This method provides for transformation efficiency increases in cyanobacteria by more than two orders of magnitude and can be further combined with other optimization strategies to bring about even greater efficiency increases. This could make the use of cyanobacteria for production of useful compounds highly attractive. Potential Applications ?Increased transformation efficiency of Cyanobacteria ?Production of renewable fuels ?Production of chemicals (agrochemicals, specialty chemicals, etc.) ?Production of biodegradable plastics ?Production of human and animal supplements ?Production of therapeutics ?Production of cosmetics Benefits and Advantages ?161-fold increase in transformation efficiency ?Two orders of magnitude higher transformation efficiency was achieved ?Can be combined with other optimization strategies to further increase efficiency ?Does not affect the host genetic background Download Original PDF For more information about the inventor(s) and their research, please see Dr. Meldrum's directory webpage",
author = "Deirdre Meldrum",
year = "2014",
month = "4",
day = "21",
language = "English (US)",
type = "Patent",

}

TY - PAT

T1 - Premethylation of DNA for transformation of Synechocystis sp. PCC 6803

AU - Meldrum, Deirdre

PY - 2014/4/21

Y1 - 2014/4/21

N2 - Cyanobacteria are model species for studying photosynthesis and recently have been gaining increased attention for their ability to produce renewable fuels and chemicals by harvesting solar energy and recycling carbon dioxide. Unfortunately, despite all the recent research and exciting achievements made regarding cyanobacteria, genetic transformation efficiency is still low, much lower than other species such as E. coli and yeast. This presents a significant barrier to harnessing this type of microorganism. In order for cyanobacteria to compete as a model system for producing useful products, new strategies to enhance the transformation efficiency are needed. Researchers at the Biodesign Institute have developed novel methods to increase the transformation efficiency of cyanobacteria by 161-fold. Our researchers have found that pre-methylation of foreign DNA, by certain methylase genes, increases the integrative transformation efficiency of cyanobacteria and does not pose any change to the host genetic background. This technology could be used to create a novel and useful commercial kit for high-efficiency transformation of cyanobacteria. This method provides for transformation efficiency increases in cyanobacteria by more than two orders of magnitude and can be further combined with other optimization strategies to bring about even greater efficiency increases. This could make the use of cyanobacteria for production of useful compounds highly attractive. Potential Applications ?Increased transformation efficiency of Cyanobacteria ?Production of renewable fuels ?Production of chemicals (agrochemicals, specialty chemicals, etc.) ?Production of biodegradable plastics ?Production of human and animal supplements ?Production of therapeutics ?Production of cosmetics Benefits and Advantages ?161-fold increase in transformation efficiency ?Two orders of magnitude higher transformation efficiency was achieved ?Can be combined with other optimization strategies to further increase efficiency ?Does not affect the host genetic background Download Original PDF For more information about the inventor(s) and their research, please see Dr. Meldrum's directory webpage

AB - Cyanobacteria are model species for studying photosynthesis and recently have been gaining increased attention for their ability to produce renewable fuels and chemicals by harvesting solar energy and recycling carbon dioxide. Unfortunately, despite all the recent research and exciting achievements made regarding cyanobacteria, genetic transformation efficiency is still low, much lower than other species such as E. coli and yeast. This presents a significant barrier to harnessing this type of microorganism. In order for cyanobacteria to compete as a model system for producing useful products, new strategies to enhance the transformation efficiency are needed. Researchers at the Biodesign Institute have developed novel methods to increase the transformation efficiency of cyanobacteria by 161-fold. Our researchers have found that pre-methylation of foreign DNA, by certain methylase genes, increases the integrative transformation efficiency of cyanobacteria and does not pose any change to the host genetic background. This technology could be used to create a novel and useful commercial kit for high-efficiency transformation of cyanobacteria. This method provides for transformation efficiency increases in cyanobacteria by more than two orders of magnitude and can be further combined with other optimization strategies to bring about even greater efficiency increases. This could make the use of cyanobacteria for production of useful compounds highly attractive. Potential Applications ?Increased transformation efficiency of Cyanobacteria ?Production of renewable fuels ?Production of chemicals (agrochemicals, specialty chemicals, etc.) ?Production of biodegradable plastics ?Production of human and animal supplements ?Production of therapeutics ?Production of cosmetics Benefits and Advantages ?161-fold increase in transformation efficiency ?Two orders of magnitude higher transformation efficiency was achieved ?Can be combined with other optimization strategies to further increase efficiency ?Does not affect the host genetic background Download Original PDF For more information about the inventor(s) and their research, please see Dr. Meldrum's directory webpage

M3 - Patent

ER -