Predictive Modeling of Periodic Behavior for Human-Robot Symbiotic Walking

Geoffrey Clark, Joseph Campbell, Seyed Mostafa Rezayat Sorkhabadi, Wenlong Zhang, Heni Ben Amor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We propose in this paper Periodic Interaction Primitives - a probabilistic framework that can be used to learn compact models of periodic behavior. Our approach extends existing formulations of Interaction Primitives to periodic movement regimes, i.e., walking. We show that this model is particularly well-suited for learning data-driven, customized models of human walking, which can then be used for generating predictions over future states or for inferring latent, biomechanical variables. We also demonstrate how the same framework can be used to learn controllers for a robotic prosthesis using an imitation learning approach. Results in experiments with human participants indicate that Periodic Interaction Primitives efficiently generate predictions and ankle angle control signals for a robotic prosthetic ankle, with MAE of 2.21° in 0.0008s per inference. Performance degrades gracefully in the presence of noise or sensor fall outs. Compared to alternatives, this algorithm functions 20 times faster and performed 4.5 times more accurately on test subjects.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7599-7605
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: May 31 2020Aug 31 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period5/31/208/31/20

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Predictive Modeling of Periodic Behavior for Human-Robot Symbiotic Walking'. Together they form a unique fingerprint.

Cite this