Prediction of the three-dimensional turbulent boundary layer over a swept bump

Xiaohua Wu, Kyle Squires

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) computations have been used for prediction of a spatially developing three-dimensional turbulent boundary layer over a bump swept at 45 deg with respect to the upstream flow. Subgrid-scale stresses in the LES were parameterized using the dynamic eddy viscosity model. Reynolds stresses in the RANS calculations were closed using the v2-f model and Spalart-Allmaras one-equation model. In the calculation, a zero-pressure gradient, statistically two-dimensional boundary layer at momentum thickness Reynolds number 3.8×103 is introduced one-half chord length upstream of the onset of curvature. The flow is statistically homogeneous along the coordinate parallel to the bump axis and is subject to combined perturbations in streamwise pressure gradient, spanwise pressure gradient, and surface curvature. The turning angle of the wall shear stress measured with respect to the upstream flow changes sign twice due to the alternating spanwise pressure gradient, with a maximum of more than 45 deg near the trailing edge. No-slip conditions were imposed on solid boundaries in RANS, whereas algebraic approximate boundary conditions were applied in the LES to model the near-wall flow. Mean wall shear stresses, necessary to close the approximate boundary conditions, were supplied from either experimental measurements or a separate RANS calculation. In general, the agreement between simulation and experiment in the present work is comparable to that previously obtained for the two-dimensional boundary layer at zero sweep angle. The mean flow in accurately predicted using both techniques, with some discrepancy occurring in prediction of the mean crossflow in the LES. Second-order statistics in the LES are in good agreement with measurements; RANS predictions of turbulence kinetic energy are slightly less accurate.

Original languageEnglish (US)
Pages (from-to)505-514
Number of pages10
JournalAIAA Journal
Volume36
Issue number4
StatePublished - Apr 1998

Fingerprint

Large eddy simulation
Boundary layers
Pressure gradient
Shear stress
Boundary conditions
Wall flow
Kinetic energy
Momentum
Reynolds number
Turbulence
Statistics
Viscosity
Experiments

ASJC Scopus subject areas

  • Aerospace Engineering

Cite this

Prediction of the three-dimensional turbulent boundary layer over a swept bump. / Wu, Xiaohua; Squires, Kyle.

In: AIAA Journal, Vol. 36, No. 4, 04.1998, p. 505-514.

Research output: Contribution to journalArticle

@article{59a4a940ed51468e949b2ccf92fd8cfe,
title = "Prediction of the three-dimensional turbulent boundary layer over a swept bump",
abstract = "Large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) computations have been used for prediction of a spatially developing three-dimensional turbulent boundary layer over a bump swept at 45 deg with respect to the upstream flow. Subgrid-scale stresses in the LES were parameterized using the dynamic eddy viscosity model. Reynolds stresses in the RANS calculations were closed using the v2-f model and Spalart-Allmaras one-equation model. In the calculation, a zero-pressure gradient, statistically two-dimensional boundary layer at momentum thickness Reynolds number 3.8×103 is introduced one-half chord length upstream of the onset of curvature. The flow is statistically homogeneous along the coordinate parallel to the bump axis and is subject to combined perturbations in streamwise pressure gradient, spanwise pressure gradient, and surface curvature. The turning angle of the wall shear stress measured with respect to the upstream flow changes sign twice due to the alternating spanwise pressure gradient, with a maximum of more than 45 deg near the trailing edge. No-slip conditions were imposed on solid boundaries in RANS, whereas algebraic approximate boundary conditions were applied in the LES to model the near-wall flow. Mean wall shear stresses, necessary to close the approximate boundary conditions, were supplied from either experimental measurements or a separate RANS calculation. In general, the agreement between simulation and experiment in the present work is comparable to that previously obtained for the two-dimensional boundary layer at zero sweep angle. The mean flow in accurately predicted using both techniques, with some discrepancy occurring in prediction of the mean crossflow in the LES. Second-order statistics in the LES are in good agreement with measurements; RANS predictions of turbulence kinetic energy are slightly less accurate.",
author = "Xiaohua Wu and Kyle Squires",
year = "1998",
month = "4",
language = "English (US)",
volume = "36",
pages = "505--514",
journal = "AIAA Journal",
issn = "0001-1452",
publisher = "American Institute of Aeronautics and Astronautics Inc. (AIAA)",
number = "4",

}

TY - JOUR

T1 - Prediction of the three-dimensional turbulent boundary layer over a swept bump

AU - Wu, Xiaohua

AU - Squires, Kyle

PY - 1998/4

Y1 - 1998/4

N2 - Large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) computations have been used for prediction of a spatially developing three-dimensional turbulent boundary layer over a bump swept at 45 deg with respect to the upstream flow. Subgrid-scale stresses in the LES were parameterized using the dynamic eddy viscosity model. Reynolds stresses in the RANS calculations were closed using the v2-f model and Spalart-Allmaras one-equation model. In the calculation, a zero-pressure gradient, statistically two-dimensional boundary layer at momentum thickness Reynolds number 3.8×103 is introduced one-half chord length upstream of the onset of curvature. The flow is statistically homogeneous along the coordinate parallel to the bump axis and is subject to combined perturbations in streamwise pressure gradient, spanwise pressure gradient, and surface curvature. The turning angle of the wall shear stress measured with respect to the upstream flow changes sign twice due to the alternating spanwise pressure gradient, with a maximum of more than 45 deg near the trailing edge. No-slip conditions were imposed on solid boundaries in RANS, whereas algebraic approximate boundary conditions were applied in the LES to model the near-wall flow. Mean wall shear stresses, necessary to close the approximate boundary conditions, were supplied from either experimental measurements or a separate RANS calculation. In general, the agreement between simulation and experiment in the present work is comparable to that previously obtained for the two-dimensional boundary layer at zero sweep angle. The mean flow in accurately predicted using both techniques, with some discrepancy occurring in prediction of the mean crossflow in the LES. Second-order statistics in the LES are in good agreement with measurements; RANS predictions of turbulence kinetic energy are slightly less accurate.

AB - Large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) computations have been used for prediction of a spatially developing three-dimensional turbulent boundary layer over a bump swept at 45 deg with respect to the upstream flow. Subgrid-scale stresses in the LES were parameterized using the dynamic eddy viscosity model. Reynolds stresses in the RANS calculations were closed using the v2-f model and Spalart-Allmaras one-equation model. In the calculation, a zero-pressure gradient, statistically two-dimensional boundary layer at momentum thickness Reynolds number 3.8×103 is introduced one-half chord length upstream of the onset of curvature. The flow is statistically homogeneous along the coordinate parallel to the bump axis and is subject to combined perturbations in streamwise pressure gradient, spanwise pressure gradient, and surface curvature. The turning angle of the wall shear stress measured with respect to the upstream flow changes sign twice due to the alternating spanwise pressure gradient, with a maximum of more than 45 deg near the trailing edge. No-slip conditions were imposed on solid boundaries in RANS, whereas algebraic approximate boundary conditions were applied in the LES to model the near-wall flow. Mean wall shear stresses, necessary to close the approximate boundary conditions, were supplied from either experimental measurements or a separate RANS calculation. In general, the agreement between simulation and experiment in the present work is comparable to that previously obtained for the two-dimensional boundary layer at zero sweep angle. The mean flow in accurately predicted using both techniques, with some discrepancy occurring in prediction of the mean crossflow in the LES. Second-order statistics in the LES are in good agreement with measurements; RANS predictions of turbulence kinetic energy are slightly less accurate.

UR - http://www.scopus.com/inward/record.url?scp=0000512749&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000512749&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000512749

VL - 36

SP - 505

EP - 514

JO - AIAA Journal

JF - AIAA Journal

SN - 0001-1452

IS - 4

ER -