Abstract
In this study, we demonstrate the feasibility of predicting hand forces from brain activity recorded with scalp electroencephalography (EEG). Ten able-bodied subjects participated in two tasks: an isometric force production task and a grasp-and-lift task using unconstrained and constrained grasps. We found that EEG electrodes spanning central areas of the scalp were highly correlated to force rate trajectories. Moreover, EEG grand averages in central sites resembled force rate trajectories as opposed to force trajectories. The grasp-and-lift task resulted in higher decoding accuracies than the isometric force production task: across nine subjects, median accuracies for the isometric force production task were r=0.35 whereas median accuracies for unconstrained grasping were r=0.51 and for constrained grasping were r=0.50. Such results could lead to an understanding of the neural representation behind the control of hand forces and could be implemented in the neural control of closed-loop hand-based neuroprostheses.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 7570-7573 |
Number of pages | 4 |
Volume | 2015-November |
ISBN (Print) | 9781424492718 |
DOIs | |
State | Published - Nov 4 2015 |
Event | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy Duration: Aug 25 2015 → Aug 29 2015 |
Other
Other | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 8/25/15 → 8/29/15 |
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Signal Processing
- Biomedical Engineering
- Health Informatics