Post-tectonic landscape evolution of a coupled basin and range: Pinaleño Mountains and Safford Basin, southeastern Arizona

Matthew C. Jungers, Arjun Heimsath

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The Pinaleño Mountains and adjacent Safford Basin are a landscape defined by the extensional tectonics of the Basin and Range physiographic province. However, over the last ~4 m.y., this coupled basin and range have been actively degrading in the absence of widespread regional extension. While rates of relief generation and upland erosion during active subsidence ca. 12-5 Ma are reflected in the geometry of the basin's structure and the stratigraphy it contains, rates of post-tectonic landscape evolution from the Pliocene to the present have been heretofore unknown. We combined topographic analyses of the Pinaleño Mountains with cosmogenic nuclide-derived catchmentaveraged erosion rates and burial dates of axial and piedmont deposits to quantify rates of post-tectonic landscape evolution and define a chronology for the last stages of deposition and subsequent incision in Safford Basin. In addition to constraining the timing of a deposit's formation, cosmogenic nuclide burial dates provide paleo-upland erosion rates at the time of deposition. Erosion rates in the Pinaleño Mountains have been generally moderate over the past 4 m.y., ranging between ~30 and 60 m/m.y. with no strong relationship to the drainage basins' modern topography. A potential acceleration of erosion rates to 100-250 m/m.y. between 3.5 and 2 Ma correlates with an inferred period of enhanced precipitation as well as the arrival from upstream of the Gila River in Safford Basin sometime shortly before 2.8 Ma. Widespread incision of Safford Basin was under way by ca. 2 Ma, as recorded by the dissection of piedmont basin highstand deposits (Frye Mesa) and two intermediate Gila River terraces on the northeast margin of Safford Basin (dated to 1.8 Ma and 0.64 Ma). Gila River incision rates have ranged from 30 to 60 m/m.y. over the past 3 m.y. Paleo-upland erosion rates and modern millennial-scale upland erosion rates fall within the same range as incision rates of the Gila River in Safford Basin, suggesting that upland erosion rates are predominantly a function of baselevel fall driven by axial incision. However, based on similarities between catchmentaveraged erosion rates and topography from basins draining into the integrated Safford Basin and the still internally drained Sulphur Springs Basin to the south, it appears that upland erosion rates during the Quaternary are not being driven exclusively by regional incision rates.

Original languageEnglish (US)
Pages (from-to)469-486
Number of pages18
JournalBulletin of the Geological Society of America
Volume128
Issue number3-4
DOIs
StatePublished - 2016

Fingerprint

landscape evolution
erosion rate
tectonics
basin
piedmont
mountain range
mountain
river
topography
river terrace
dissection
extensional tectonics
highstand
drainage basin
rate
chronology
Pliocene
relief
subsidence
stratigraphy

ASJC Scopus subject areas

  • Geology

Cite this

@article{41b831afa2c548c19b91e0fd8625a7b8,
title = "Post-tectonic landscape evolution of a coupled basin and range: Pinale{\~n}o Mountains and Safford Basin, southeastern Arizona",
abstract = "The Pinale{\~n}o Mountains and adjacent Safford Basin are a landscape defined by the extensional tectonics of the Basin and Range physiographic province. However, over the last ~4 m.y., this coupled basin and range have been actively degrading in the absence of widespread regional extension. While rates of relief generation and upland erosion during active subsidence ca. 12-5 Ma are reflected in the geometry of the basin's structure and the stratigraphy it contains, rates of post-tectonic landscape evolution from the Pliocene to the present have been heretofore unknown. We combined topographic analyses of the Pinale{\~n}o Mountains with cosmogenic nuclide-derived catchmentaveraged erosion rates and burial dates of axial and piedmont deposits to quantify rates of post-tectonic landscape evolution and define a chronology for the last stages of deposition and subsequent incision in Safford Basin. In addition to constraining the timing of a deposit's formation, cosmogenic nuclide burial dates provide paleo-upland erosion rates at the time of deposition. Erosion rates in the Pinale{\~n}o Mountains have been generally moderate over the past 4 m.y., ranging between ~30 and 60 m/m.y. with no strong relationship to the drainage basins' modern topography. A potential acceleration of erosion rates to 100-250 m/m.y. between 3.5 and 2 Ma correlates with an inferred period of enhanced precipitation as well as the arrival from upstream of the Gila River in Safford Basin sometime shortly before 2.8 Ma. Widespread incision of Safford Basin was under way by ca. 2 Ma, as recorded by the dissection of piedmont basin highstand deposits (Frye Mesa) and two intermediate Gila River terraces on the northeast margin of Safford Basin (dated to 1.8 Ma and 0.64 Ma). Gila River incision rates have ranged from 30 to 60 m/m.y. over the past 3 m.y. Paleo-upland erosion rates and modern millennial-scale upland erosion rates fall within the same range as incision rates of the Gila River in Safford Basin, suggesting that upland erosion rates are predominantly a function of baselevel fall driven by axial incision. However, based on similarities between catchmentaveraged erosion rates and topography from basins draining into the integrated Safford Basin and the still internally drained Sulphur Springs Basin to the south, it appears that upland erosion rates during the Quaternary are not being driven exclusively by regional incision rates.",
author = "Jungers, {Matthew C.} and Arjun Heimsath",
year = "2016",
doi = "10.1130/B31276.1",
language = "English (US)",
volume = "128",
pages = "469--486",
journal = "Bulletin of the Geological Society of America",
issn = "0016-7606",
publisher = "Geological Society of America",
number = "3-4",

}

TY - JOUR

T1 - Post-tectonic landscape evolution of a coupled basin and range

T2 - Pinaleño Mountains and Safford Basin, southeastern Arizona

AU - Jungers, Matthew C.

AU - Heimsath, Arjun

PY - 2016

Y1 - 2016

N2 - The Pinaleño Mountains and adjacent Safford Basin are a landscape defined by the extensional tectonics of the Basin and Range physiographic province. However, over the last ~4 m.y., this coupled basin and range have been actively degrading in the absence of widespread regional extension. While rates of relief generation and upland erosion during active subsidence ca. 12-5 Ma are reflected in the geometry of the basin's structure and the stratigraphy it contains, rates of post-tectonic landscape evolution from the Pliocene to the present have been heretofore unknown. We combined topographic analyses of the Pinaleño Mountains with cosmogenic nuclide-derived catchmentaveraged erosion rates and burial dates of axial and piedmont deposits to quantify rates of post-tectonic landscape evolution and define a chronology for the last stages of deposition and subsequent incision in Safford Basin. In addition to constraining the timing of a deposit's formation, cosmogenic nuclide burial dates provide paleo-upland erosion rates at the time of deposition. Erosion rates in the Pinaleño Mountains have been generally moderate over the past 4 m.y., ranging between ~30 and 60 m/m.y. with no strong relationship to the drainage basins' modern topography. A potential acceleration of erosion rates to 100-250 m/m.y. between 3.5 and 2 Ma correlates with an inferred period of enhanced precipitation as well as the arrival from upstream of the Gila River in Safford Basin sometime shortly before 2.8 Ma. Widespread incision of Safford Basin was under way by ca. 2 Ma, as recorded by the dissection of piedmont basin highstand deposits (Frye Mesa) and two intermediate Gila River terraces on the northeast margin of Safford Basin (dated to 1.8 Ma and 0.64 Ma). Gila River incision rates have ranged from 30 to 60 m/m.y. over the past 3 m.y. Paleo-upland erosion rates and modern millennial-scale upland erosion rates fall within the same range as incision rates of the Gila River in Safford Basin, suggesting that upland erosion rates are predominantly a function of baselevel fall driven by axial incision. However, based on similarities between catchmentaveraged erosion rates and topography from basins draining into the integrated Safford Basin and the still internally drained Sulphur Springs Basin to the south, it appears that upland erosion rates during the Quaternary are not being driven exclusively by regional incision rates.

AB - The Pinaleño Mountains and adjacent Safford Basin are a landscape defined by the extensional tectonics of the Basin and Range physiographic province. However, over the last ~4 m.y., this coupled basin and range have been actively degrading in the absence of widespread regional extension. While rates of relief generation and upland erosion during active subsidence ca. 12-5 Ma are reflected in the geometry of the basin's structure and the stratigraphy it contains, rates of post-tectonic landscape evolution from the Pliocene to the present have been heretofore unknown. We combined topographic analyses of the Pinaleño Mountains with cosmogenic nuclide-derived catchmentaveraged erosion rates and burial dates of axial and piedmont deposits to quantify rates of post-tectonic landscape evolution and define a chronology for the last stages of deposition and subsequent incision in Safford Basin. In addition to constraining the timing of a deposit's formation, cosmogenic nuclide burial dates provide paleo-upland erosion rates at the time of deposition. Erosion rates in the Pinaleño Mountains have been generally moderate over the past 4 m.y., ranging between ~30 and 60 m/m.y. with no strong relationship to the drainage basins' modern topography. A potential acceleration of erosion rates to 100-250 m/m.y. between 3.5 and 2 Ma correlates with an inferred period of enhanced precipitation as well as the arrival from upstream of the Gila River in Safford Basin sometime shortly before 2.8 Ma. Widespread incision of Safford Basin was under way by ca. 2 Ma, as recorded by the dissection of piedmont basin highstand deposits (Frye Mesa) and two intermediate Gila River terraces on the northeast margin of Safford Basin (dated to 1.8 Ma and 0.64 Ma). Gila River incision rates have ranged from 30 to 60 m/m.y. over the past 3 m.y. Paleo-upland erosion rates and modern millennial-scale upland erosion rates fall within the same range as incision rates of the Gila River in Safford Basin, suggesting that upland erosion rates are predominantly a function of baselevel fall driven by axial incision. However, based on similarities between catchmentaveraged erosion rates and topography from basins draining into the integrated Safford Basin and the still internally drained Sulphur Springs Basin to the south, it appears that upland erosion rates during the Quaternary are not being driven exclusively by regional incision rates.

UR - http://www.scopus.com/inward/record.url?scp=84960539605&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84960539605&partnerID=8YFLogxK

U2 - 10.1130/B31276.1

DO - 10.1130/B31276.1

M3 - Article

AN - SCOPUS:84960539605

VL - 128

SP - 469

EP - 486

JO - Bulletin of the Geological Society of America

JF - Bulletin of the Geological Society of America

SN - 0016-7606

IS - 3-4

ER -