Planar image-based reconstruction of pervious concrete pore structure and permeability prediction

Milani S. Sumanasooriya, Dale P. Bentz, Narayanan Neithalath

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Transport properties of porous materials such as pervious concretes are inherently dependent on a variety of pore structure features. Empirical equations are typically used to relate the pore structure of a porous material to its permeability. In this study, a computational procedure is employed to predict the permeability of 12 different pervious concrete mixtures from three-dimensional (3D) material structures reconstructed from starting planar images of the original material. Two-point correlation (TPC) functions of the two-dimensional (2D) images from real pervious concrete specimens are employed along with the measured volumetric porosities in the reconstruction process. The pore structure features of the parent material and the reconstructed images are found to be similar. The permeabilities predicted using Darcy's law applied to the reconstructed structures and the experimentally measured permeabilities of pervious concretes are found to be in reasonably good agreement. The 3D reconstruction process provides a relatively inexpensive method (instead of methods such as X-ray tomography) to explore the nature of the pore space in pervious concretes and predict permeability, thus facilitating its use in understanding the changes in pore structure as a result of changes in mixture proportions.

Original languageEnglish (US)
Pages (from-to)413-421
Number of pages9
JournalACI Materials Journal
Volume107
Issue number4
StatePublished - Jul 2010
Externally publishedYes

Fingerprint

Pore structure
Concretes
Porous materials
Concrete mixtures
Transport properties
Tomography
Porosity
X rays

Keywords

  • Permeability
  • Pervious concrete
  • Porosity
  • Three-dimensional reconstruction

ASJC Scopus subject areas

  • Building and Construction
  • Materials Science(all)
  • Civil and Structural Engineering

Cite this

Planar image-based reconstruction of pervious concrete pore structure and permeability prediction. / Sumanasooriya, Milani S.; Bentz, Dale P.; Neithalath, Narayanan.

In: ACI Materials Journal, Vol. 107, No. 4, 07.2010, p. 413-421.

Research output: Contribution to journalArticle

@article{590c4607d746459d951b163447c6a446,
title = "Planar image-based reconstruction of pervious concrete pore structure and permeability prediction",
abstract = "Transport properties of porous materials such as pervious concretes are inherently dependent on a variety of pore structure features. Empirical equations are typically used to relate the pore structure of a porous material to its permeability. In this study, a computational procedure is employed to predict the permeability of 12 different pervious concrete mixtures from three-dimensional (3D) material structures reconstructed from starting planar images of the original material. Two-point correlation (TPC) functions of the two-dimensional (2D) images from real pervious concrete specimens are employed along with the measured volumetric porosities in the reconstruction process. The pore structure features of the parent material and the reconstructed images are found to be similar. The permeabilities predicted using Darcy's law applied to the reconstructed structures and the experimentally measured permeabilities of pervious concretes are found to be in reasonably good agreement. The 3D reconstruction process provides a relatively inexpensive method (instead of methods such as X-ray tomography) to explore the nature of the pore space in pervious concretes and predict permeability, thus facilitating its use in understanding the changes in pore structure as a result of changes in mixture proportions.",
keywords = "Permeability, Pervious concrete, Porosity, Three-dimensional reconstruction",
author = "Sumanasooriya, {Milani S.} and Bentz, {Dale P.} and Narayanan Neithalath",
year = "2010",
month = "7",
language = "English (US)",
volume = "107",
pages = "413--421",
journal = "ACI Materials Journal",
issn = "0889-325X",
publisher = "American Concrete Institute",
number = "4",

}

TY - JOUR

T1 - Planar image-based reconstruction of pervious concrete pore structure and permeability prediction

AU - Sumanasooriya, Milani S.

AU - Bentz, Dale P.

AU - Neithalath, Narayanan

PY - 2010/7

Y1 - 2010/7

N2 - Transport properties of porous materials such as pervious concretes are inherently dependent on a variety of pore structure features. Empirical equations are typically used to relate the pore structure of a porous material to its permeability. In this study, a computational procedure is employed to predict the permeability of 12 different pervious concrete mixtures from three-dimensional (3D) material structures reconstructed from starting planar images of the original material. Two-point correlation (TPC) functions of the two-dimensional (2D) images from real pervious concrete specimens are employed along with the measured volumetric porosities in the reconstruction process. The pore structure features of the parent material and the reconstructed images are found to be similar. The permeabilities predicted using Darcy's law applied to the reconstructed structures and the experimentally measured permeabilities of pervious concretes are found to be in reasonably good agreement. The 3D reconstruction process provides a relatively inexpensive method (instead of methods such as X-ray tomography) to explore the nature of the pore space in pervious concretes and predict permeability, thus facilitating its use in understanding the changes in pore structure as a result of changes in mixture proportions.

AB - Transport properties of porous materials such as pervious concretes are inherently dependent on a variety of pore structure features. Empirical equations are typically used to relate the pore structure of a porous material to its permeability. In this study, a computational procedure is employed to predict the permeability of 12 different pervious concrete mixtures from three-dimensional (3D) material structures reconstructed from starting planar images of the original material. Two-point correlation (TPC) functions of the two-dimensional (2D) images from real pervious concrete specimens are employed along with the measured volumetric porosities in the reconstruction process. The pore structure features of the parent material and the reconstructed images are found to be similar. The permeabilities predicted using Darcy's law applied to the reconstructed structures and the experimentally measured permeabilities of pervious concretes are found to be in reasonably good agreement. The 3D reconstruction process provides a relatively inexpensive method (instead of methods such as X-ray tomography) to explore the nature of the pore space in pervious concretes and predict permeability, thus facilitating its use in understanding the changes in pore structure as a result of changes in mixture proportions.

KW - Permeability

KW - Pervious concrete

KW - Porosity

KW - Three-dimensional reconstruction

UR - http://www.scopus.com/inward/record.url?scp=77955747949&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955747949&partnerID=8YFLogxK

M3 - Article

VL - 107

SP - 413

EP - 421

JO - ACI Materials Journal

JF - ACI Materials Journal

SN - 0889-325X

IS - 4

ER -