Pilot Study: Evaluation of Dual-Energy Computed Tomography Measurement Strategies for Positron Emission Tomography Correlation in Pancreatic Adenocarcinoma

Jorge Oldan, Miao He, Teresa Wu, Alvin C. Silva, Jing Li, J. Ross Mitchell, William M. Pavlicek, Michael C. Roarke, Amy K. Hara

Research output: Contribution to journalArticle

4 Scopus citations


We sought to determine whether dual-energy computed tomography (DECT) measurements correlate with positron emission tomography (PET) standardized uptake values (SUVs) in pancreatic adenocarcinoma, and to determine the optimal DECT imaging variables and modeling strategy to produce the highest correlation with maximum SUV (SUVmax). We reviewed 25 patients with unresectable pancreatic adenocarcinoma seen at Mayo Clinic, Scottsdale, Arizona, who had PET–computed tomography (PET/CT) and enhanced DECT performed the same week between March 25, 2010 and December 9, 2011. For each examination, DECT measurements were taken using one of three methods: (1) average values of three tumor regions of interest (ROIs) (method 1); (2) one ROI in the area of highest subjective DECT enhancement (method 2); and (3) one ROI in the area corresponding to PET SUVmax (method 3). There were 133 DECT variables using method 1, and 89 using the other methods. Univariate and multivariate analysis regression models were used to identify important correlations between DECT variables and PET SUVmax. Both R2 and adjusted R2 were calculated for the multivariate model to compensate for the increased number of predictors. The average SUVmax was 5 (range, 1.8–12.0). Multivariate analysis of DECT imaging variables outperformed univariate analysis (r = 0.91; R2 = 0.82; adjusted R2 = 0.75 vs r < 0.58; adjusted R2 < 0.34). Method 3 had the highest correlation with PET SUVmax (R2 = 0.82), followed by method 1 (R2 = 0.79) and method 2 (R2 = 0.57). DECT thus has clinical potential as a surrogate for, or as a complement to, PET in patients with pancreatic adenocarcinoma.

Original languageEnglish (US)
Pages (from-to)824-832
Number of pages9
JournalJournal of Digital Imaging
Issue number6
StatePublished - Nov 6 2014



  • Cancer
  • Dual-energy CT
  • Informatics
  • PET
  • PET/CT
  • Pancreas
  • Pancreatic adenocarcinoma

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Science Applications

Cite this