Phototactic supersmarticles

William Savoie, Sarah Cannon, Joshua J. Daymude, Ross Warkentin, Shengkai Li, Andrea Richa, Dana Randall, Daniel I. Goldman

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Smarticles or smart active particles are small robots equipped with only basic movement and sensing abilities that are incapable of rotating or displacing individually. We study the ensemble behavior of smarticles, i.e., the behavior a collective of these very simple computational elements can achieve, and how such behavior can be implemented using minimal programming. We show that an ensemble of smarticles constrained to remain close to one another (which we call a supersmarticle), achieves directed locomotion toward or away from a light source, a phenomenon known as phototaxing. We present experimental and theoretical models of phototactic supersmarticles that collectively move with a directed displacement in response to light. The motion of the supersmarticle is stochastic, performing approximate free diffusion, and is a result of chaotic interactions among smarticles. The system can be directed by introducing asymmetries among the individual smarticle’s behavior, in our case, by varying activity levels in response to light, resulting in supersmarticle-biased motion.

Original languageEnglish (US)
JournalArtificial Life and Robotics
DOIs
StateAccepted/In press - Jan 1 2018

Keywords

  • Active matter
  • Locomotion
  • Phototaxing
  • Programmable matter
  • Swarm robotics

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Phototactic supersmarticles'. Together they form a unique fingerprint.

  • Cite this

    Savoie, W., Cannon, S., Daymude, J. J., Warkentin, R., Li, S., Richa, A., Randall, D., & Goldman, D. I. (Accepted/In press). Phototactic supersmarticles. Artificial Life and Robotics. https://doi.org/10.1007/s10015-018-0473-7