Perspective: Maximum caliber is a general variational principle for dynamical systems

Purushottam D. Dixit, Jason Wagoner, Corey Weistuch, Steve Presse, Kingshuk Ghosh, Ken A. Dill

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics - such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production - are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

Original languageEnglish (US)
Article number010901
JournalJournal of Chemical Physics
Volume148
Issue number1
DOIs
StatePublished - Jan 7 2018

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Perspective: Maximum caliber is a general variational principle for dynamical systems'. Together they form a unique fingerprint.

Cite this