Abstract

Measures of node ranking, such as personalized PageRank, are utilized in many web and social-network based prediction and recommendation applications. Despite their e'ectiveness when the underlying graph is certain, however, these measures become difficult to apply in the presence of uncertainties, as they are not designed for graphs that include uncertain information, such as edges that mutually exclude each other. While there are several ways to naively extend existing techniques (such as trying to encode uncertainties as edge weights or computing all possible scenarios), as we discuss in this paper, these either lead to large degrees of errors or are very expensive to compute, as the number of possible worlds can grow exponentially with the amount of uncertainty. To tackle with this challenge, in this paper, we propose an effcient Uncertain Personalized PageRank (UPPR) algorithm to approximately compute personalized PageRank values on an uncertain graph with edge uncertainties. UPPR avoids enumeration of all possible worlds, yet it is able to achieve comparable accuracy by carefully encoding edge uncertainties in a data structure that leads to fast approximations. Experimental results show that UPPR is very effcient in terms of execution time and its accuracy is comparable or beffer than more costly alternatives.

Original languageEnglish (US)
Title of host publicationSIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages525-534
Number of pages10
ISBN (Electronic)9781450350228
DOIs
StatePublished - Aug 7 2017
Event40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2017 - Tokyo, Shinjuku, Japan
Duration: Aug 7 2017Aug 11 2017

Publication series

NameSIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval

Other

Other40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2017
CountryJapan
CityTokyo, Shinjuku
Period8/7/178/11/17

ASJC Scopus subject areas

  • Information Systems
  • Software
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Personalized pagerank in uncertain graphs with mutually exclusive edges'. Together they form a unique fingerprint.

  • Cite this

    Kim, J. H., Li, M. L., Candan, K., & Sapino, M. L. (2017). Personalized pagerank in uncertain graphs with mutually exclusive edges. In SIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 525-534). (SIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval). Association for Computing Machinery, Inc. https://doi.org/10.1145/3077136.3080794