Particle size and platelet activating factor-acetylhydrolase influence LDL oxidation by an artery wall coculture system

F. Sigari, T. Sagrado, M. Navab, S. Hama, P. Reaven

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Small dense LDL has enhanced susceptibility to in vitro copper mediated oxidation (LDL-OX). However, LDL-OX in the absence of serum and artery wall cells may not reliably reflect LDL modification in vivo. Additionally, it is unknown if there exist any differences in the atherogenic effects resulting from oxidation of buoyant and dense LDL and whether this process is influenced by the LDL associated enzyme platelet activating factor-acetylhydrolase(PAF-AH). To more closely test the effect that particle size and PAF-AH may have on in vivo modification of LDL we prepared buoyant (B-LDL: 1.022-1.034 g/ml) and dense LDL (D-LDL:1.040-1.054 g/ml) and evaluated their LDL-OX (by measuring conjugated diene formation) and their ability to stimulate monocyte chemotaxis and adherence to endothelial cells after oxidation in a smooth muscle/endothelial cell coculture system containing 7.5% lipoprotein-deficient serum (LPDS). D-LDL particles were significantly smaller (22.5 ± 1.6 vs. 27.5 ± 5.4 nm, p<0.05) and had greater LDL-OX compared to B-LDL. LDL-OX lag time correlated with LDL particle size (r=0.82, p<0.05). LDL conditioned by cocultures stimulated monocyte chemotaxis and adherence to endothelial cells in the order D-LDL>B-LDL=unconditioned LDL. Since PAF-AH reportedly reduces the atherogenic properties of oxidized LDL, but is progressively lost during LDL oxidation we evaluated the effect of PAF-AH inactivation by phenylmethylsulfonylfluoride treatment. LDL-OX was increased in both B-LDL and D-LDL after PAF-AH inactivation, yet the change in chemotaxis differed (B-LDL 1.3±.8 vs. D-LDL 8.6 ±4.3 monocytes per field, p <0.05). In conclusion, D-LDL particles are more susceptible to oxidation even in a serum-containing in vitro model of the artery wall. Additionally, PAF-AH protects both LDL subfractions from oxidation when present, however its inactivation in D-LDL markedly enhances D-LDL's bioactivity. Thus, D-LDL may be particulary atherogenic because its enhanced susceptibility to oxidation may also accelerate the inactivation of PAF-AH, further stimulating monocyte chemotaxis and adherence.

Original languageEnglish (US)
Pages (from-to)180A
JournalJournal of Investigative Medicine
Volume44
Issue number1
StatePublished - Jan 1 1996
Externally publishedYes

Fingerprint

Platelet Activating Factor
Coculture Techniques
Particle Size
Arteries
Particle size
Oxidation
oxidized low density lipoprotein
Chemotaxis
Monocytes
Endothelial cells
Endothelial Cells
Serum

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Particle size and platelet activating factor-acetylhydrolase influence LDL oxidation by an artery wall coculture system. / Sigari, F.; Sagrado, T.; Navab, M.; Hama, S.; Reaven, P.

In: Journal of Investigative Medicine, Vol. 44, No. 1, 01.01.1996, p. 180A.

Research output: Contribution to journalArticle

@article{6ad5848b73a642aea1218ccb8d1eaeef,
title = "Particle size and platelet activating factor-acetylhydrolase influence LDL oxidation by an artery wall coculture system",
abstract = "Small dense LDL has enhanced susceptibility to in vitro copper mediated oxidation (LDL-OX). However, LDL-OX in the absence of serum and artery wall cells may not reliably reflect LDL modification in vivo. Additionally, it is unknown if there exist any differences in the atherogenic effects resulting from oxidation of buoyant and dense LDL and whether this process is influenced by the LDL associated enzyme platelet activating factor-acetylhydrolase(PAF-AH). To more closely test the effect that particle size and PAF-AH may have on in vivo modification of LDL we prepared buoyant (B-LDL: 1.022-1.034 g/ml) and dense LDL (D-LDL:1.040-1.054 g/ml) and evaluated their LDL-OX (by measuring conjugated diene formation) and their ability to stimulate monocyte chemotaxis and adherence to endothelial cells after oxidation in a smooth muscle/endothelial cell coculture system containing 7.5{\%} lipoprotein-deficient serum (LPDS). D-LDL particles were significantly smaller (22.5 ± 1.6 vs. 27.5 ± 5.4 nm, p<0.05) and had greater LDL-OX compared to B-LDL. LDL-OX lag time correlated with LDL particle size (r=0.82, p<0.05). LDL conditioned by cocultures stimulated monocyte chemotaxis and adherence to endothelial cells in the order D-LDL>B-LDL=unconditioned LDL. Since PAF-AH reportedly reduces the atherogenic properties of oxidized LDL, but is progressively lost during LDL oxidation we evaluated the effect of PAF-AH inactivation by phenylmethylsulfonylfluoride treatment. LDL-OX was increased in both B-LDL and D-LDL after PAF-AH inactivation, yet the change in chemotaxis differed (B-LDL 1.3±.8 vs. D-LDL 8.6 ±4.3 monocytes per field, p <0.05). In conclusion, D-LDL particles are more susceptible to oxidation even in a serum-containing in vitro model of the artery wall. Additionally, PAF-AH protects both LDL subfractions from oxidation when present, however its inactivation in D-LDL markedly enhances D-LDL's bioactivity. Thus, D-LDL may be particulary atherogenic because its enhanced susceptibility to oxidation may also accelerate the inactivation of PAF-AH, further stimulating monocyte chemotaxis and adherence.",
author = "F. Sigari and T. Sagrado and M. Navab and S. Hama and P. Reaven",
year = "1996",
month = "1",
day = "1",
language = "English (US)",
volume = "44",
pages = "180A",
journal = "Journal of Investigative Medicine",
issn = "1081-5589",
publisher = "Lippincott Williams and Wilkins",
number = "1",

}

TY - JOUR

T1 - Particle size and platelet activating factor-acetylhydrolase influence LDL oxidation by an artery wall coculture system

AU - Sigari, F.

AU - Sagrado, T.

AU - Navab, M.

AU - Hama, S.

AU - Reaven, P.

PY - 1996/1/1

Y1 - 1996/1/1

N2 - Small dense LDL has enhanced susceptibility to in vitro copper mediated oxidation (LDL-OX). However, LDL-OX in the absence of serum and artery wall cells may not reliably reflect LDL modification in vivo. Additionally, it is unknown if there exist any differences in the atherogenic effects resulting from oxidation of buoyant and dense LDL and whether this process is influenced by the LDL associated enzyme platelet activating factor-acetylhydrolase(PAF-AH). To more closely test the effect that particle size and PAF-AH may have on in vivo modification of LDL we prepared buoyant (B-LDL: 1.022-1.034 g/ml) and dense LDL (D-LDL:1.040-1.054 g/ml) and evaluated their LDL-OX (by measuring conjugated diene formation) and their ability to stimulate monocyte chemotaxis and adherence to endothelial cells after oxidation in a smooth muscle/endothelial cell coculture system containing 7.5% lipoprotein-deficient serum (LPDS). D-LDL particles were significantly smaller (22.5 ± 1.6 vs. 27.5 ± 5.4 nm, p<0.05) and had greater LDL-OX compared to B-LDL. LDL-OX lag time correlated with LDL particle size (r=0.82, p<0.05). LDL conditioned by cocultures stimulated monocyte chemotaxis and adherence to endothelial cells in the order D-LDL>B-LDL=unconditioned LDL. Since PAF-AH reportedly reduces the atherogenic properties of oxidized LDL, but is progressively lost during LDL oxidation we evaluated the effect of PAF-AH inactivation by phenylmethylsulfonylfluoride treatment. LDL-OX was increased in both B-LDL and D-LDL after PAF-AH inactivation, yet the change in chemotaxis differed (B-LDL 1.3±.8 vs. D-LDL 8.6 ±4.3 monocytes per field, p <0.05). In conclusion, D-LDL particles are more susceptible to oxidation even in a serum-containing in vitro model of the artery wall. Additionally, PAF-AH protects both LDL subfractions from oxidation when present, however its inactivation in D-LDL markedly enhances D-LDL's bioactivity. Thus, D-LDL may be particulary atherogenic because its enhanced susceptibility to oxidation may also accelerate the inactivation of PAF-AH, further stimulating monocyte chemotaxis and adherence.

AB - Small dense LDL has enhanced susceptibility to in vitro copper mediated oxidation (LDL-OX). However, LDL-OX in the absence of serum and artery wall cells may not reliably reflect LDL modification in vivo. Additionally, it is unknown if there exist any differences in the atherogenic effects resulting from oxidation of buoyant and dense LDL and whether this process is influenced by the LDL associated enzyme platelet activating factor-acetylhydrolase(PAF-AH). To more closely test the effect that particle size and PAF-AH may have on in vivo modification of LDL we prepared buoyant (B-LDL: 1.022-1.034 g/ml) and dense LDL (D-LDL:1.040-1.054 g/ml) and evaluated their LDL-OX (by measuring conjugated diene formation) and their ability to stimulate monocyte chemotaxis and adherence to endothelial cells after oxidation in a smooth muscle/endothelial cell coculture system containing 7.5% lipoprotein-deficient serum (LPDS). D-LDL particles were significantly smaller (22.5 ± 1.6 vs. 27.5 ± 5.4 nm, p<0.05) and had greater LDL-OX compared to B-LDL. LDL-OX lag time correlated with LDL particle size (r=0.82, p<0.05). LDL conditioned by cocultures stimulated monocyte chemotaxis and adherence to endothelial cells in the order D-LDL>B-LDL=unconditioned LDL. Since PAF-AH reportedly reduces the atherogenic properties of oxidized LDL, but is progressively lost during LDL oxidation we evaluated the effect of PAF-AH inactivation by phenylmethylsulfonylfluoride treatment. LDL-OX was increased in both B-LDL and D-LDL after PAF-AH inactivation, yet the change in chemotaxis differed (B-LDL 1.3±.8 vs. D-LDL 8.6 ±4.3 monocytes per field, p <0.05). In conclusion, D-LDL particles are more susceptible to oxidation even in a serum-containing in vitro model of the artery wall. Additionally, PAF-AH protects both LDL subfractions from oxidation when present, however its inactivation in D-LDL markedly enhances D-LDL's bioactivity. Thus, D-LDL may be particulary atherogenic because its enhanced susceptibility to oxidation may also accelerate the inactivation of PAF-AH, further stimulating monocyte chemotaxis and adherence.

UR - http://www.scopus.com/inward/record.url?scp=8044245555&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=8044245555&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:8044245555

VL - 44

SP - 180A

JO - Journal of Investigative Medicine

JF - Journal of Investigative Medicine

SN - 1081-5589

IS - 1

ER -