Partially asynchronous, parallel algorithms for network flow and other problems

P. Tseng, D. P. Bertsekas, J. N. Tsitsiklis

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The problem of computing a fixed point of a nonexpansive function f is considered. Sufficient conditions are provided under which a parallel, partially asynchronous implementation of the iteration x:= f(x) converges. These results are then applied to (i) quadratic programming subject to box constraints, (ii) strictly convex cost network flow optimization, (iii) an agreement and a Markov chain problem, (iv) neural network optimization, and (v) finding the least element of a polyhedral set determined by a weakly diagonally dominant, Leontief system. Finally, simulation results illustrating the attainable speedup and the effects of asynchronism are presented.

Original languageEnglish (US)
Pages (from-to)678-710
Number of pages33
JournalSIAM Journal on Control and Optimization
Volume28
Issue number3
DOIs
StatePublished - 1990
Externally publishedYes

ASJC Scopus subject areas

  • Control and Optimization
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Partially asynchronous, parallel algorithms for network flow and other problems'. Together they form a unique fingerprint.

Cite this