Parallel inclusive communication for connecting heterogeneous IoT devices at the edge

Zicheng Chi, Yan Li, Xin Liu, Yao Yao, Yanchao Zhang, Ting Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

WiFi and Bluetooth Low Energy (BLE) are widely used in Internet of Things (IoT) devices. Since WiFi and BLE work within the overlapped ISM 2.4 GHz band, they will interfere with each other. Existing approaches have demonstrated their effectiveness in mitigating the interference. However, further performance improvement has been hampered by the design goal of exclusive communication of WiFi or BLE, which only allows one WiFi or BLE device to transmit packets at any specific time slot on the overlapped channel within the communication range. In this paper, we explore a new communication method, called Parallel Inclusive Communication (PIC), which leverages the unique modulation schemes of WiFi and BLE for parallel inclusive bi-directional transmission of both WiFi and BLE data at the same time within the overlapped channel. In this communication system, the PIC gateway is designed upon the IEEE 802.11g and 802.15.1 frameworks while the WiFi and BLE clients are commercial off-the-shelf devices. PIC achieves similar data rates for these parallel WiFi and BLE communications as if WiFi and BLE are communicating separately. PIC's system architecture naturally fits at the edge of the Internet, which is an optimal site for concurrently collecting (or disseminating) data from (or to) an exponentially increasing number of IoT devices that are using WiFi or BLE. We conducted extensive evaluations under four real-world scenarios. Results show that compared with existing approaches, PIC can significantly i) increase the packet reception ratios by 183%; ii) reduce the round-trip delay time by 590 times and energy consumption by 50.5 times; and iii) improve the throughput under WiFi and BLE coexistence scenarios.

Original languageEnglish (US)
Title of host publicationSenSys 2019 - Proceedings of the 17th Conference on Embedded Networked Sensor Systems
EditorsMi Zhang
PublisherAssociation for Computing Machinery, Inc
Pages205-218
Number of pages14
ISBN (Electronic)9781450369503
DOIs
StatePublished - Nov 10 2019
Externally publishedYes
Event17th ACM Conference on Embedded Networked Sensor Systems, SenSys 2019 - New York, United States
Duration: Nov 10 2019Nov 13 2019

Publication series

NameSenSys 2019 - Proceedings of the 17th Conference on Embedded Networked Sensor Systems

Conference

Conference17th ACM Conference on Embedded Networked Sensor Systems, SenSys 2019
CountryUnited States
CityNew York
Period11/10/1911/13/19

Keywords

  • Heterogenous networks
  • IoT
  • Parallel communication

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Parallel inclusive communication for connecting heterogeneous IoT devices at the edge'. Together they form a unique fingerprint.

Cite this