Origin of the nonadhesive properties of fibrinogen matrices probed by force spectroscopy

Ivan S. Yermolenko, Alexander Fuhrmann, Sergei N. Magonov, Valeryi K. Lishko, Stanislav P. Oshkadyerov, Robert Ros, Tatiana Ugarova

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The deposition of a multilayered fibrinogen matrix on various surfaces results in a dramatic reduction of integrinmediated cell adhesion and outside-in signaling in platelets and leukocytes. The conversion of a highly adhesive, lowdensity fibrinogen substrate to the nonadhesive high-density fibrinogen matrix occurs within a very narrow range of fibrinogen coating concentrations. The molecular events responsible for this transition are not well understood. Herein, single-cell and molecular force spectroscopy were used to determine the early steps in the formation of nonadhesive fibrinogen substrates. We show that the adsorption of fibrinogen in the form of a molecular bilayer coincides with a several-fold reduction in the adhesion forces generated between the AFM tip and the substrate as well as between a cell and the substrate. The subsequent deposition of new layers at higher coating concentrations of fibrinogen results in a small additional decrease in adhesion forces. The poorly adhesive fibrinogen bilayer is more extensible under an applied tensile force than is the surface-bound fibrinogen monolayer. Following chemical crosslinking, the stabilized bilayer displays the mechanical and adhesive properties characteristic of a more adhesive fibrinogen monolayer. We propose that a greater compliance of the bi-and multilayer fibrinogen matrices has its origin in the interaction between the molecules forming the adjacent layers. Understanding the mechanical properties of nonadhesive fibrinogen matrices should be of importance in the therapeutic control of pathological thrombosis and in biomaterials science.

Original languageEnglish (US)
Pages (from-to)17269-17277
Number of pages9
JournalLangmuir
Volume26
Issue number22
DOIs
StatePublished - Nov 16 2010

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Origin of the nonadhesive properties of fibrinogen matrices probed by force spectroscopy'. Together they form a unique fingerprint.

Cite this