Optimizing Stiffness of a Novel Parallel-Actuated Robotic Shoulder Exoskeleton for a Desired Task or Workspace

Justin Hunt, Panagiotis Artemiadis, Hyunglae Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

The purpose of this work is to optimize the stiffness of a novel parallel-actuated robotic exoskeleton designed to offer a large workspace. This is done in an effort to help provide a solution to the issue wearable parallel actuated robots face regarding a tradeoff between stiffness and workspace. Presented in the form of a shoulder exoskeleton, the device demonstrates a new parallel architecture that can be used for wearable hip, ankle and wrist robots as well. The stiffness of the architecture is dependent on the placement of its actuated substructures. Therefore, it is desirable to place these substructures effectively so as to maximize dynamic performance for any application. In this work, an analytical stiffness model of the device is created and validated experimentally. The model is then used, along with a method of bounded nonlinear multi-objective optimization to configure the parallel actuators so as to maximize stiffness for the entire workspace. Furthermore, it is shown how to use the same technique to optimize the device for a particular task, such as lifting in the sagittal plane.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6745-6751
Number of pages7
ISBN (Electronic)9781538630815
DOIs
StatePublished - Sep 10 2018
Event2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia
Duration: May 21 2018May 25 2018

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Country/TerritoryAustralia
CityBrisbane
Period5/21/185/25/18

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Optimizing Stiffness of a Novel Parallel-Actuated Robotic Shoulder Exoskeleton for a Desired Task or Workspace'. Together they form a unique fingerprint.

Cite this