Optimization-Based Design of Bounded-Error Estimators Robust to Missing Data

Kwesi J. Rutledge, Sze Yong, Necmiye Ozay

Research output: Contribution to journalArticle

4 Scopus citations

Abstract

Non-asymptotic bounded-error state estimators that provide hard bounds on the estimation error are crucial for safety-critical applications. This paper proposes a class of optimal bounded-error affine estimators to achieve a novel property we are calling Equalized Recovery that can be computed by leveraging ideas from the dual problem of affine finite horizon optimal control design. In particular, by using Q-parametrization, the estimator design problem is reduced to a convex optimization problem. An extension of this estimator to handle missing data (e.g., due to package drops or sensor glitches) is also proposed. These ideas are illustrated with a numerical example motivated by vehicle safety systems.

Original languageEnglish (US)
Pages (from-to)157-162
Number of pages6
JournalIFAC-PapersOnLine
Volume51
Issue number16
DOIs
StatePublished - Jan 1 2018

Keywords

  • bounded-error estimation
  • missing data
  • Robust estimators

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Optimization-Based Design of Bounded-Error Estimators Robust to Missing Data<sup>⁎</sup>'. Together they form a unique fingerprint.

  • Cite this