Optimal power control and scheduling under hard deadline constraints for continuous fading channels

Ahmed Ewaisha, Cihan Tepedelenlioglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider a joint scheduling-and-power-allocation problem of a downlink cellular system. The system consists of two groups of users: real-time (RT) and non-real-time (NRT) users. Given an average power constraint on the base station, the problem is to find an algorithm that satisfies the RT hard deadline constraint and NRT queue stability constraint. We propose a sum-rate-maximizing algorithm that satisfies these constraints. We also show, through simulations, that the proposed algorithm has an average complexity that is close-to-linear in the number of RT users. The power allocation policy in the proposed algorithm has a closed-form expression for the two groups of users. However, interestingly, the power policy of the RT users differ in structure from that of the NRT users. We also show the superiority of the proposed algorithms over existing approaches using extensive simulations.

Original languageEnglish (US)
Title of host publicationConference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
EditorsMichael B. Matthews
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1422-1426
Number of pages5
Volume2017-October
ISBN (Electronic)9781538618233
DOIs
StatePublished - Apr 10 2018
Event51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 - Pacific Grove, United States
Duration: Oct 29 2017Nov 1 2017

Other

Other51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017
CountryUnited States
CityPacific Grove
Period10/29/1711/1/17

ASJC Scopus subject areas

  • Control and Optimization
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Biomedical Engineering
  • Instrumentation

Fingerprint Dive into the research topics of 'Optimal power control and scheduling under hard deadline constraints for continuous fading channels'. Together they form a unique fingerprint.

  • Cite this

    Ewaisha, A., & Tepedelenlioglu, C. (2018). Optimal power control and scheduling under hard deadline constraints for continuous fading channels. In M. B. Matthews (Ed.), Conference Record of 51st Asilomar Conference on Signals, Systems and Computers, ACSSC 2017 (Vol. 2017-October, pp. 1422-1426). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ACSSC.2017.8335589