Optimal policy for deployment of machine learning models on energy-bounded systems

Seyed Iman Mirzadeh, Hassan Ghasemzadeh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

With the recent advances in both machine learning and embedded systems research, the demand to deploy computational models for real-time execution on edge devices has increased substantially. Without deploying computational models on edge devices, the frequent transmission of sensor data to the cloud results in rapid battery draining due to the energy consumption of wireless data transmission. This rapid power dissipation leads to a considerable reduction in the battery lifetime of the system, therefore jeopardizing the real-world utility of smart devices. It is well-established that for difficult machine learning tasks, models with higher performance often require more computation power and thus are not power-efficient choices for deployment on edge devices. However, the trade-offs between performance and power consumption are not well studied. While numerous methods (e.g., model compression) have been developed to obtain an optimal model, these methods focus on improving the efficiency of a “single” model. In an entirely new direction, we introduce an effective method to find a combination of “multiple” models that are optimal in terms of power-efficiency and performance by solving an optimization problem in which both performance and power consumption are taken into account. Experimental results demonstrate that on the ImageNet dataset, we can achieve a 20% energy reduction with only 0.3% accuracy drop compared to Squeeze-and-Excitation Networks. Compared to a pruned neural network for human activity recognition, while consuming 1.7% less energy, our proposed policy achieves 1.3% higher accuracy.

Original languageEnglish (US)
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3422-3429
Number of pages8
ISBN (Electronic)9780999241165
StatePublished - 2020
Externally publishedYes
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: Jan 1 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/1/21 → …

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Optimal policy for deployment of machine learning models on energy-bounded systems'. Together they form a unique fingerprint.

Cite this