Abstract
The implementation of optimal control strategies involving antiviral treatment and/or isolation measures can reduce significantly the number of clinical cases of influenza. Pandemic-level control measures must be carefully assessed specially in resource-limited situations. A model for the transmission dynamics of influenza is used to evaluate the impact of isolation and/or antiviral drug delivery measures during an influenza pandemic. Five pre-selected control strategies involving antiviral treatment and isolation are tested under the "unlimited" resource assumption followed by an exploration of the impact of these "optimal" policies when resources are limited in the context of a 1918-type influenza pandemic scenario. The implementation of antiviral treatment at the start of a pandemic tends to reduce the magnitude of epidemic peaks, spreading the maximal impact of an outbreak over an extended window in time. Hence, the controls' timing and intensity can reduce the pressures placed on the health care infrastructure by a pandemic reducing the stress put on the system during epidemic peaks. The role of isolation strategies is highlighted in this study particularly when access to antiviral resources is limited.
Original language | English (US) |
---|---|
Pages (from-to) | 136-150 |
Number of pages | 15 |
Journal | Journal of Theoretical Biology |
Volume | 265 |
Issue number | 2 |
DOIs | |
State | Published - Jul 2010 |
Keywords
- Antiviral treatment
- Influenza pandemic
- Isolation
- Optimal control
ASJC Scopus subject areas
- Statistics and Probability
- Modeling and Simulation
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics