Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater-a perspective

Sergi Garcia-Segura, Xiaolei Qu, Pedro J.J. Alvarez, Brian P. Chaplin, Wei Chen, John C. Crittenden, Yujie Feng, Guandao Gao, Zhen He, Chia Hung Hou, Xiao Hu, Guibin Jiang, Jae Hong Kim, Jiansheng Li, Qilin Li, Jie Ma, Jinxing Ma, Alec Brockway Nienhauser, Junfeng Niu, Bingcai PanXie Quan, Filippo Ronzani, Dino Villagran, T. David Waite, W. Shane Walker, Can Wang, Michael S. Wong, Paul Westerhoff

Research output: Contribution to journalReview articlepeer-review

88 Scopus citations

Abstract

Based upon an international workshop, this perspective evaluates how nano-scale pore structures and unique properties that emerge at nano- and sub-nano-size domains could improve the energy efficiency and selectivity of electroseparation or electrocatalytic processes for treating potable or waste waters. An Eisenhower matrix prioritizes the urgency or impact of addressing potential barriers or opportunities. There has been little optimization of electrochemical reactors to increase mass transport rates of pollutants to, from, and within electrode surfaces, which become important as nano-porous structures are engineered into electrodes. A "trap-and-zap"strategy is discussed wherein nanostructures (pores, sieves, and crystal facets) are employed to allow localized concentration of target pollutants relative to background solutes (i.e., localized pollutant trapping). The trapping is followed by localized production of tailored reactive oxygen species to selectively degrade the target pollutant (i.e., localized zapping). Frequently overlooked in much of the electrode-material development literature, nano-scale structures touted to be highly "reactive"towards target pollutants may also be the most susceptible to material degradation (i.e., aging) or fouling by mineral scales that form due to localized pH changes. A need exists to study localized pH and electric-field related aging or fouling mechanisms and strategies to limit or reverse adverse outcomes from aging or fouling. This perspective provides examples of the trends and identifies promising directions to advance nano-materials and engineering principles to exploit the growing need for near chemical-free, advanced oxidation/reduction or separation processes enabled through electrochemistry.

Original languageEnglish (US)
Pages (from-to)2178-2194
Number of pages17
JournalEnvironmental Science: Nano
Volume7
Issue number8
DOIs
StatePublished - Aug 2020

ASJC Scopus subject areas

  • Materials Science (miscellaneous)
  • General Environmental Science

Fingerprint

Dive into the research topics of 'Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater-a perspective'. Together they form a unique fingerprint.

Cite this