On unified numerical algorithm for 3-D scattering from dielectric and PEC random rough surfaces

Lisha Zhang, George Pan, Jimmy A. Jones

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We present a unified fast scattering algorithm for dielectric random rough surfaces that asymptotically reduces to the perfect electric conductor (PEC) case when the loss tangent grows extremely large. The Coifman wavelets are employed to implement Galerkin's procedure in the method of moments (MoM). The Coiflets-based surface integral equations (IEs) consist of both the tangential and normal components of electromagnetic fields as unknowns. The inherited mathematical superiority, e.g., local multiresolution analysis and high regularity with Holder index 1.449 in smoothness, allows efficiently implementing both electric field IE and magnetic field IE. Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O(N). The orthogonality and Riesz basis of the Coiflets generate well-conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. In addition, a semianalytical expression of the tapered-wave carried power is derived, which speeds up computations of the normalization factor of scattering coefficients. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems, namely, matrix condition numbers are kept small and solutions are stable under extremely large loss tangent, where normal components of $H$ -field and tangential $E$ -field have vanished. Compared with the previous publications and laboratory measurements, good agreement is observed.

Original languageEnglish (US)
Article number7874116
Pages (from-to)2615-2623
Number of pages9
JournalIEEE Transactions on Antennas and Propagation
Volume65
Issue number5
DOIs
StatePublished - May 1 2017

Keywords

  • Coifman wavelets
  • random rough surface
  • scattering
  • surface integral equations (IEs)

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'On unified numerical algorithm for 3-D scattering from dielectric and PEC random rough surfaces'. Together they form a unique fingerprint.

Cite this