## Abstract

This note evaluates the numerical schemes used for computing the axial component of the mountain torque from gridded global surface pressure and topography datasets. It is shown that the two formulas of the mountain torque based on (i) an integral of the product of the surface pressure and the gradient of topography, and (ii) an integral of the product of the topography and the surface pressure gradient, should produce identical results if a centered even-ordered finite-difference scheme or the spectral method is used to evaluate the integrand. Noncentered finite-difference schemes are not recommended not only because they produce extremely large errors but also because they produce different results for the two formulas. When compared with the benchmark calculation using the spectral method, it is found that the centered fourth-order finite-difference scheme is an efficient and generally accurate approximation for practical applications. Using the data from NCEP-NCAR reanalysis, the finite-difference schemes generally underestimate the global mountain torque compared to the benchmark. This negative error is interpreted as due to the asymmetry in the distribution of surface pressure and in the steepness of the topography between the western and eastern slopes of the mountains.

Original language | English (US) |
---|---|

Pages (from-to) | 4005-4009 |

Number of pages | 5 |

Journal | Monthly Weather Review |

Volume | 136 |

Issue number | 10 |

DOIs | |

State | Published - 2008 |

Externally published | Yes |

## ASJC Scopus subject areas

- Atmospheric Science