On the chromatic index of multigraphs without large triangles

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Let M be a multigraph. Vizing (Kibernetika (Kiev) 1 (1965), 29-39) proved that χ′(M)≤Δ(M)+μ(M). Here it is proved that if χ′(M)≥Δ(M)+s, where 1 2(μ(M) + 1) < s then M contains a 2s-sided triangle. In particular, (C′) if μ(M)≤2 and M does not contain a 4-sided triangle then χ′(M)≤Δ(M) + 1. Javedekar (J. Graph Theory 4 (1980), 265-268) had conjectured that (C) if G is a simple graph that does not induce K1,3 or K5-e then χ(G)≤ω(G) + 1. The author and Schmerl (Discrete Math. 45 (1983), 277-285) proved that (C′) implies (C); thus Javedekar's conjecture is true.

Original languageEnglish (US)
Pages (from-to)156-160
Number of pages5
JournalJournal of Combinatorial Theory, Series B
Volume36
Issue number2
DOIs
StatePublished - Apr 1984
Externally publishedYes

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'On the chromatic index of multigraphs without large triangles'. Together they form a unique fingerprint.

Cite this