Abstract
Population dynamics with demographic variability is frequently studied using discrete random variables with continuous-time Markov chain (CTMC) models. An approximation of a CTMC model using continuous random variables can be derived in a straightforward manner by applying standard methods based on the reaction rates in the CTMC model. This leads to a system of Itô stochastic differential equations (SDEs) which generally have the form dy=μdt+GdW, where y is the population vector of random variables, μ is the drift vector, and G is the diffusion matrix. In some problems, the derived SDE model may not have real-valued or nonnegative solutions for all time. For such problems, the SDE model may be declared infeasible. In this investigation, new systems of SDEs are derived with real-valued solutions and with nonnegative solutions. To derive real-valued SDE models, reaction rates are assumed to be nonnegative for all time with negative reaction rates assigned probability zero. This biologically realistic assumption leads to the derivation of real-valued SDE population models. However, small but negative values may still arise for a real-valued SDE model. This is due to the magnitudes of certain problem-dependent diffusion coefficients when population sizes are near zero. A slight modification of the diffusion coefficients when population sizes are near zero ensures that a real-valued SDE model has a nonnegative solution, yet maintains the integrity of the SDE model when sizes are not near zero. Several population dynamic problems are examined to illustrate the methodology.
Original language | English (US) |
---|---|
Pages (from-to) | 487-515 |
Number of pages | 29 |
Journal | Journal Of Mathematical Biology |
Volume | 81 |
Issue number | 2 |
DOIs | |
State | Published - Aug 1 2020 |
Keywords
- Demographic variability
- Population dynamics
- Stochastic differential equation
ASJC Scopus subject areas
- Modeling and Simulation
- Agricultural and Biological Sciences (miscellaneous)
- Applied Mathematics