On random sampling in uniform hypergraphs

Andrzej Czygrinow, Brendan Nagle

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A k-graph \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} on vertex set [n] = {1,...,n} is said to be (ρ,ζ)-uniform if every S ⊆ [n] of size s = |S| > ζn spans (ρ ± ζ)\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{s}{k}$ \end{document} edges. A 'grabbing lemma' of Mubayi and Rödl shows that this property is typically inherited locally: if \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} is (ρ,ζ)-uniform, then all but exp{-s1/k/20}\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{n}{s}$ \end{document} sets \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $ S \in \binom{[n]}{s}$ \end{document} span (ρ,ζ')-uniform subhypergraphs \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}\lbrack S\rbrack$ \end{document}, where ζ'→ 0 as ζ → 0, s ≥ s0(ζ') and n is sufficiently large. In this article, we establish a grabbing lemma for a different concept of hypergraph uniformity, and infer the result above as a corollary. In particular, we improve, in the context above, the error exp{-s1/k/20} to exp{-cs}, for a constant c = c(k,ζ') > 0.

Original languageEnglish (US)
Pages (from-to)422-440
Number of pages19
JournalRandom Structures and Algorithms
Volume38
Issue number4
DOIs
StatePublished - Jul 2011

Fingerprint

Uniform Hypergraph
Random Sampling
Sampling
Lemma
Hypergraph
Uniformity
Corollary
Graph in graph theory
Vertex of a graph

Keywords

  • Hypergraph regularity
  • Random sampling

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Software
  • Mathematics(all)
  • Applied Mathematics

Cite this

On random sampling in uniform hypergraphs. / Czygrinow, Andrzej; Nagle, Brendan.

In: Random Structures and Algorithms, Vol. 38, No. 4, 07.2011, p. 422-440.

Research output: Contribution to journalArticle

Czygrinow, Andrzej ; Nagle, Brendan. / On random sampling in uniform hypergraphs. In: Random Structures and Algorithms. 2011 ; Vol. 38, No. 4. pp. 422-440.
@article{9452d18152d34a0cb2c000446fa38643,
title = "On random sampling in uniform hypergraphs",
abstract = "A k-graph \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} on vertex set [n] = {1,...,n} is said to be (ρ,ζ)-uniform if every S ⊆ [n] of size s = |S| > ζn spans (ρ ± ζ)\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{s}{k}$ \end{document} edges. A 'grabbing lemma' of Mubayi and R{\"o}dl shows that this property is typically inherited locally: if \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} is (ρ,ζ)-uniform, then all but exp{-s1/k/20}\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{n}{s}$ \end{document} sets \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $ S \in \binom{[n]}{s}$ \end{document} span (ρ,ζ')-uniform subhypergraphs \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}\lbrack S\rbrack$ \end{document}, where ζ'→ 0 as ζ → 0, s ≥ s0(ζ') and n is sufficiently large. In this article, we establish a grabbing lemma for a different concept of hypergraph uniformity, and infer the result above as a corollary. In particular, we improve, in the context above, the error exp{-s1/k/20} to exp{-cs}, for a constant c = c(k,ζ') > 0.",
keywords = "Hypergraph regularity, Random sampling",
author = "Andrzej Czygrinow and Brendan Nagle",
year = "2011",
month = "7",
doi = "10.1002/rsa.20326",
language = "English (US)",
volume = "38",
pages = "422--440",
journal = "Random Structures and Algorithms",
issn = "1042-9832",
publisher = "John Wiley and Sons Ltd",
number = "4",

}

TY - JOUR

T1 - On random sampling in uniform hypergraphs

AU - Czygrinow, Andrzej

AU - Nagle, Brendan

PY - 2011/7

Y1 - 2011/7

N2 - A k-graph \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} on vertex set [n] = {1,...,n} is said to be (ρ,ζ)-uniform if every S ⊆ [n] of size s = |S| > ζn spans (ρ ± ζ)\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{s}{k}$ \end{document} edges. A 'grabbing lemma' of Mubayi and Rödl shows that this property is typically inherited locally: if \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} is (ρ,ζ)-uniform, then all but exp{-s1/k/20}\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{n}{s}$ \end{document} sets \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $ S \in \binom{[n]}{s}$ \end{document} span (ρ,ζ')-uniform subhypergraphs \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}\lbrack S\rbrack$ \end{document}, where ζ'→ 0 as ζ → 0, s ≥ s0(ζ') and n is sufficiently large. In this article, we establish a grabbing lemma for a different concept of hypergraph uniformity, and infer the result above as a corollary. In particular, we improve, in the context above, the error exp{-s1/k/20} to exp{-cs}, for a constant c = c(k,ζ') > 0.

AB - A k-graph \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} on vertex set [n] = {1,...,n} is said to be (ρ,ζ)-uniform if every S ⊆ [n] of size s = |S| > ζn spans (ρ ± ζ)\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{s}{k}$ \end{document} edges. A 'grabbing lemma' of Mubayi and Rödl shows that this property is typically inherited locally: if \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}$ \end{document} is (ρ,ζ)-uniform, then all but exp{-s1/k/20}\documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $\binom{n}{s}$ \end{document} sets \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} $ S \in \binom{[n]}{s}$ \end{document} span (ρ,ζ')-uniform subhypergraphs \documentclass{article} \usepackage{amsmath,amsfonts,mathrsfs,amssymb}\pagestyle{empty}\begin{document} ${\mathcal{G}}^{(k)}\lbrack S\rbrack$ \end{document}, where ζ'→ 0 as ζ → 0, s ≥ s0(ζ') and n is sufficiently large. In this article, we establish a grabbing lemma for a different concept of hypergraph uniformity, and infer the result above as a corollary. In particular, we improve, in the context above, the error exp{-s1/k/20} to exp{-cs}, for a constant c = c(k,ζ') > 0.

KW - Hypergraph regularity

KW - Random sampling

UR - http://www.scopus.com/inward/record.url?scp=79956078752&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79956078752&partnerID=8YFLogxK

U2 - 10.1002/rsa.20326

DO - 10.1002/rsa.20326

M3 - Article

AN - SCOPUS:79956078752

VL - 38

SP - 422

EP - 440

JO - Random Structures and Algorithms

JF - Random Structures and Algorithms

SN - 1042-9832

IS - 4

ER -