On-chip protein synthesis for making microarrays.

Niroshan Ramachandran, Eugenie Hainsworth, Gokhan Demirkan, Joshua LaBaer

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Protein microarrays are a miniaturized format for displaying in close spatial density hundreds or thousands of purified proteins that provide a powerful platform for the high-throughput assay of protein function. The traditional method of producing them requires the high-throughput production and printing of proteins, a laborious method that raises concerns about the stability of the proteins and the shelf life of the arrays. A novel method of producing protein microarrays, called nucleic acid programmable protein array (NAPPA), overcomes these limitations by synthesizing proteins in situ. NAPPA entails spotting plasmid DNA encoding the relevant proteins, which are then simultaneously transcribed and translated by a cell-free system. The expressed proteins are captured and oriented at the site of expression by a capture reagent that targets a fusion protein on either the N- or C-terminus of the protein. Using a mammalian extract, NAPPA expresses and captures 1000-fold more protein per feature than conventional protein-printing arrays. Moreover, this approach minimizes concerns about protein stability and integrity, because proteins are produced just in time for assaying. NAPPA has already proven to be a robust tool for protein functional assays.

Original languageEnglish (US)
Pages (from-to)1-14
Number of pages14
JournalMethods in molecular biology (Clifton, N.J.)
Volume328
DOIs
StatePublished - 2006
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'On-chip protein synthesis for making microarrays.'. Together they form a unique fingerprint.

Cite this