On Borromean links and related structures

Michael O'Keeffe, Michael M.J. Treacy

Research output: Contribution to journalArticlepeer-review

Abstract

The creation of knotted, woven and linked molecular structures is an exciting and growing field in synthetic chemistry. Presented here is a description of an extended family of structures related to the classical `Borromean rings', in which no two rings are directly linked. These structures may serve as templates for the designed synthesis of Borromean polycatenanes. Links of n components in which no two are directly linked are termed `n-Borromean' [Liang & Mislow (1994). J. Math. Chem. 16, 27-35]. In the classic Borromean rings the components are three rings (closed loops). More generally, they may be a finite number of periodic objects such as graphs (nets), or sets of strings related by translations as in periodic chain mail. It has been shown [Chamberland & Herman (2015). Math. Intelligencer, 37, 20-25] that the linking patterns can be described by complete directed graphs (known as tournaments) and those up to 13 vertices that are vertex-transitive are enumerated. In turn, these lead to ring-transitive (isonemal) n-Borromean rings. Optimal piecewise-linear embeddings of such structures are given in their highest-symmetry point groups. In particular, isonemal embeddings with rotoinversion symmetry are described for three, five, six, seven, nine, ten, 11, 13 and 14 rings. Piecewise-linear embeddings are also given of isonemal 1- and 2-periodic polycatenanes (chains and chain mail) in their highest-symmetry setting. Also the linking of n-Borromean sets of interleaved honeycomb nets is described.

Original languageEnglish (US)
Pages (from-to)379-391
Number of pages13
JournalActa Crystallographica Section A: Foundations and Advances
Volume77
DOIs
StatePublished - Sep 1 2021

Keywords

  • Borromean rings
  • isonemal
  • n-Borromean
  • piecewise-linear embedding

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Materials Science(all)
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'On Borromean links and related structures'. Together they form a unique fingerprint.

Cite this