On a new extended finite element method for dislocations

Core enrichment and nonlinear formulation

Robert Gracie, Jay Oswald, Ted Belytschko

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.

Original languageEnglish (US)
Pages (from-to)200-214
Number of pages15
JournalJournal of the Mechanics and Physics of Solids
Volume56
Issue number1
DOIs
StatePublished - Jan 2008
Externally publishedYes

Fingerprint

finite element method
Finite element method
formulations
Geometry
discontinuity
geometry

Keywords

  • Dislocations
  • Extended finite element method
  • Interfaces
  • Nonlinear
  • Peach-Koehler force

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials
  • Condensed Matter Physics

Cite this

On a new extended finite element method for dislocations : Core enrichment and nonlinear formulation. / Gracie, Robert; Oswald, Jay; Belytschko, Ted.

In: Journal of the Mechanics and Physics of Solids, Vol. 56, No. 1, 01.2008, p. 200-214.

Research output: Contribution to journalArticle

@article{8c76f053bf184d4595f0b1a0d696e3b2,
title = "On a new extended finite element method for dislocations: Core enrichment and nonlinear formulation",
abstract = "A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.",
keywords = "Dislocations, Extended finite element method, Interfaces, Nonlinear, Peach-Koehler force",
author = "Robert Gracie and Jay Oswald and Ted Belytschko",
year = "2008",
month = "1",
doi = "10.1016/j.jmps.2007.07.010",
language = "English (US)",
volume = "56",
pages = "200--214",
journal = "Journal of the Mechanics and Physics of Solids",
issn = "0022-5096",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - On a new extended finite element method for dislocations

T2 - Core enrichment and nonlinear formulation

AU - Gracie, Robert

AU - Oswald, Jay

AU - Belytschko, Ted

PY - 2008/1

Y1 - 2008/1

N2 - A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.

AB - A recently developed finite element method for the modeling of dislocations is improved by adding enrichments in the neighborhood of the dislocation core. In this method, the dislocation is modeled by a line or surface of discontinuity in two or three dimensions. The method is applicable to nonlinear and anisotropic materials, large deformations, and complicated geometries. Two separate enrichments are considered: a discontinuous jump enrichment and a singular enrichment based on the closed-form, infinite-domain solutions for the dislocation core. Several examples are presented for dislocations constrained in layered materials in 2D and 3D to illustrate the applicability of the method to interface problems.

KW - Dislocations

KW - Extended finite element method

KW - Interfaces

KW - Nonlinear

KW - Peach-Koehler force

UR - http://www.scopus.com/inward/record.url?scp=37849029002&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=37849029002&partnerID=8YFLogxK

U2 - 10.1016/j.jmps.2007.07.010

DO - 10.1016/j.jmps.2007.07.010

M3 - Article

VL - 56

SP - 200

EP - 214

JO - Journal of the Mechanics and Physics of Solids

JF - Journal of the Mechanics and Physics of Solids

SN - 0022-5096

IS - 1

ER -