Observations of quantum interference effects in lateral surface superlattices

J. Ma, R. A. Puechner, A. M. Kriman, D. K. Ferry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the mesoscopic regime, where the characteristic length of a sample is comparable to the phase coherence length of electrons, quantum interference leading to a magnetoconductance periodic in the magnetic field coupled through a unit cell of a two-dimensional superlattice has been hypothesized for many years. We report here on the observation of such periodic effects in quasi-two-dimensional semiconductor structures with an additional two-dimensional periodic superlattice potential applied. In LSSLs prepared on MODFET material, magnetoconductance measurements made at 4.2K show Aharonov-Bohm type periodic oscillations with h/e periodicity in the flux coupled through each cell of the superlattice. In LSSLs on MESFET material, we find that the conductance is also periodic in the magnetic field, but with replicas of the negative magneto-resistance (signature of weak localization), with separations in magnetic field corresponding to integer changes in the flux per superlattice cell. In addition, the presence of a significant source-drain potential shifts the resonances in magnetic field. These effects are observed for relatively low magnetic fields, B<1 Tesla. Furthermore, conductance fluctuations are observed for samples whose dimensions are large compared to the inelastic mean free path.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
EditorsMurray J. Gibson, Harold G. Craighead
Place of PublicationBellingham, WA, United States
PublisherPubl by Int Soc for Optical Engineering
Pages20-30
Number of pages11
Volume1284
ISBN (Print)0819403350
StatePublished - 1990
EventNanostructures and Microstructure Correlation with Physical Properties of Semiconductors - San Diego, CA, USA
Duration: Mar 20 1990Mar 21 1990

Other

OtherNanostructures and Microstructure Correlation with Physical Properties of Semiconductors
CitySan Diego, CA, USA
Period3/20/903/21/90

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Observations of quantum interference effects in lateral surface superlattices'. Together they form a unique fingerprint.

Cite this