Novel Silver-Polymer Blend with High Conductivity and Stretchability for Flexible Interconnects

Jignesh Vanjaria, Todd Houghton, Hongbin Yu

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Stretchable and flexible electronic devices have gained significant attention in recent years, as they can be integrated into many systems such as medical sensors, displays, and robots. One of the primary areas of research is designing stretchable interconnects which provide adequate conductivity and mechanical robustness. Metal-based interconnects have been reported to have the highest conductivity, but are not stretchable enough, while elastomer interconnects are not conductive enough. In this paper we report on a silver polymer blend composite that provides excellent conductivity, stretchability and flexibility for use as a stretchable interconnect. The composite was prepared by dispersing silver flakes in a Polyvinyl alcohol (PVA), Phosphoric acid (H3PO4) and poly(3,4-ethyl-ene-dioxythiophene) (PEDOT):Poly(styrene sulfonic acid) (PSS) polymer mixture. Silver was chosen as it has the highest conductivity of all metals, while the PEDOT:PSS/PVA-H3PO4 blend was chosen as the blend offers a practical trade-off between conductivity and stretchability for the composite matrix. The polymer blend provides conductive pathways between the silver flakes, leading to the blend's superior electrical properties, even at large deformations. The synthesis process of the composite material, along with the observed electrical and mechanical properties under various straining conditions of the composite will be presented in detail.

Original languageEnglish (US)
Pages (from-to)3471-3476
Number of pages6
JournalMRS Advances
Volume1
Issue number51
DOIs
StatePublished - 2016

Keywords

  • elastic properties
  • electrical properties
  • polymerization

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Novel Silver-Polymer Blend with High Conductivity and Stretchability for Flexible Interconnects'. Together they form a unique fingerprint.

Cite this