Novel kinetic model in amorphous polymers. Spiropyran-merocyanine system revisited

Marcia Levitus, Marcio Talhavini, R. Martín Negri, Teresa Dib Zambon Atvars, Pedro F. Aramendía

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

A kinetic model for the description of non-monoexponential decay of unimolecular reactions in amorphous polymers is developed. The thermal decay of the merocyanine (MC) form of 1,3′,3′-trimethyl-6-nitrospiro-[2H-1-benzopyran-2,2′-indoline] (spiropyran, SP) in poly(alkyl methacrylates) is taken as an example. The model assumes that the time dependent first-order rate constant describing the decay relaxes from an initial value k0 to a completely relaxed value L with a relaxation time τm that depends on the matrix. A rate equation similar to the one provided by this model is found in fluorescence quenching either in micelles or in the picosecond range in solution. The fit of the temperature dependent decays of MC to SP with this model is as good as or better than the one obtained by other models such as the sum of exponential terms or the stretched exponential equation. The simple relaxation picture is unable to account for the decay at temperatures far below the glass transition temperature of the polymer. In this range, the average values of rates, represented by k0, k, and τm, poorly describe the real distribution of them. The values of k0, k, and τm for MC decay show an Arrhenius behavior in the polymers studied.

Original languageEnglish (US)
Pages (from-to)7680-7686
Number of pages7
JournalJournal of Physical Chemistry B
Volume101
Issue number39
DOIs
StatePublished - Sep 25 1997
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Novel kinetic model in amorphous polymers. Spiropyran-merocyanine system revisited'. Together they form a unique fingerprint.

Cite this