Nonlinear coupled piezoelectric-mechanical model of smart composites

Robert P. Thornburgh, Aditi Chattopadhyay

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A completely coupled piezoelectric-mechanical theory which includes the nonlinear piezoelectric effects is developed for composite plates with embedded or surface bonded actuators and sensors. A higher order laminate theory is used to describe the displacement field in order to accurately capture the effects of transverse shear in moderately thick laminates. The coupling between the piezoelectric effect and mechanical response allows for mutual influence of multiple actuators and transformation of energy between the electrical and the mechanical fields. A new fourth order distribution of electric potential is used to develop an electrical model completely compatible with the assumed higher order strain field. The behavior of actuators subjected to large electric fields is captured using the nonlinear piezoelectric-mechanical coupling terms. The resulting model shows good correlation with available experimental data.

Original languageEnglish (US)
Title of host publicationAdaptive Structures and Material Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages157-164
Number of pages8
ISBN (Electronic)9780791819135
DOIs
StatePublished - 2000
Externally publishedYes
EventASME 2000 International Mechanical Engineering Congress and Exposition, IMECE 2000 - Orlando, United States
Duration: Nov 5 2000Nov 10 2000

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2000-A

Conference

ConferenceASME 2000 International Mechanical Engineering Congress and Exposition, IMECE 2000
Country/TerritoryUnited States
CityOrlando
Period11/5/0011/10/00

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Nonlinear coupled piezoelectric-mechanical model of smart composites'. Together they form a unique fingerprint.

Cite this