Non-vacuum electroplated al for n-side electrode in Si solar cells

Wen Cheng Sun, Xiaofei Han, Haifeng Zhang, Clarence J. Tracy, Meng Tao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

This paper reports Al electroplating on a Si substrate using a room-temperature ionic liquid for the metallization of Si solar cells. The ionic liquid electrolyte was prepared by mixing anhydrous AlCl3 and 1-ethyl-3-methylimidazolium tetrachloroaluminate ([EMIM]AlCl4). The plating process was carried out in a dry nitrogen box. A sacrificial Al anode was employed, making the electrolyte reusable for many deposition runs. The sheet resistance of the Al deposits was investigated to reveal the effects of pre-bake conditions, deposition temperature, and post-deposition annealing conditions. It was found that dense and adherent Al deposits with low electrical resistivity can be obtained directly on Si substrates over a wide range of temperatures using galvanostic deposition. The resistivity of the Al deposits was in the high 10-6 ω-cm range, similar to that of screen-printed Ag. The maximum process temperature for electroplated Al was 350°C. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been demonstrated, and its optimization and characterization will be reported soon.

Original languageEnglish (US)
Title of host publication2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2533-2537
Number of pages5
ISBN (Electronic)9781479943982
DOIs
StatePublished - Oct 15 2014
Event40th IEEE Photovoltaic Specialist Conference, PVSC 2014 - Denver, United States
Duration: Jun 8 2014Jun 13 2014

Publication series

Name2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Other

Other40th IEEE Photovoltaic Specialist Conference, PVSC 2014
Country/TerritoryUnited States
CityDenver
Period6/8/146/13/14

Keywords

  • aluminum
  • electroplating
  • metallization
  • silicon solar cell

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Non-vacuum electroplated al for n-side electrode in Si solar cells'. Together they form a unique fingerprint.

Cite this