Abstract

We are surrounded by noise. The controlled explosions of internal combustion engines combine with the roar of rubber on asphalt to create the drone of road and highway traffic. Weed-whackers, lawn mowers, and leaf blowers can turn sunny suburban summer days into a buzzing confusion. Indeed, the entire universe is filled with the faint din that is the cosmic microwave background (CMB) radiation, leftover electromagnetic radiation from the Big Bang. The CMB was discovered when Penzias and Wilson (1965) went looking for the source of annoying hiss plaguing their new radio telescope, hiss that threatened to obscure signals from distant stars and galaxies. Noise seems to be entirely destructive, thus something to be eliminated, if possible. Noise can be beneficial, however, in at least two ways. One is familiar, the other paradoxical and far less well known. The familiar way is simply as a source of variety. For example, genes undergo random mutation from processes both external to the organism (e.g., cosmic rays) and internal (Dobrindt and Hacker, 2001). This genotypic variation is the source of heritable variation in phenotype, which is of course essential for the process of natural selection (Wagner, 2014). Phenotype can even vary within isogenic populations due to variation in gene expression (Fraser and Kaern, 2009). This phenotypic noise is thought to provide an evolutionary advantage for some microorganisms, as it increases the chance that some will survive under stressful conditions. The CMB noise, though destructive from the standpoint of the users of radio telescopes, plays a constructive role in generating the tiny variations in energy density in the early universe that are the seeds of structure formation. The random fluctuations we call noise gave rise to stars and galaxies and galactic clusters. This much is familiar, at least to those working in the relevant areas of biology or astrophysics. Considerably less familiar is the role that noise can play in nonlinear systems, in particular systems with one or more thresholds, points at which small differences in input give rise to disproportionate differences in output. Converting an analog signal into a digital signal involves sampling the signal at regular intervals and writing down a digital approximation of the amplitude at each point.

Original languageEnglish (US)
Title of host publicationFrom Matter to Life
Subtitle of host publicationInformation and Causality
PublisherCambridge University Press
Pages174-198
Number of pages25
ISBN (Electronic)9781316584200
ISBN (Print)9781107150539
DOIs
StatePublished - Jan 1 2017

Fingerprint

hiss
phenotype
radio telescopes
universe
blowers
galaxies
microwaves
stars
asphalt
internal combustion engines
cosmic microwave background radiation
galactic clusters
gene expression
confusion
background noise
microorganisms
mutations
nonlinear systems
biology
rubber

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Weinstein, S., & Pavlic, T. (2017). Noise and function. In From Matter to Life: Information and Causality (pp. 174-198). Cambridge University Press. https://doi.org/10.1017/9781316584200.009

Noise and function. / Weinstein, Steven; Pavlic, Theodore.

From Matter to Life: Information and Causality. Cambridge University Press, 2017. p. 174-198.

Research output: Chapter in Book/Report/Conference proceedingChapter

Weinstein, S & Pavlic, T 2017, Noise and function. in From Matter to Life: Information and Causality. Cambridge University Press, pp. 174-198. https://doi.org/10.1017/9781316584200.009
Weinstein S, Pavlic T. Noise and function. In From Matter to Life: Information and Causality. Cambridge University Press. 2017. p. 174-198 https://doi.org/10.1017/9781316584200.009
Weinstein, Steven ; Pavlic, Theodore. / Noise and function. From Matter to Life: Information and Causality. Cambridge University Press, 2017. pp. 174-198
@inbook{afec6ea789474dcbaa32f74571f9620d,
title = "Noise and function",
abstract = "We are surrounded by noise. The controlled explosions of internal combustion engines combine with the roar of rubber on asphalt to create the drone of road and highway traffic. Weed-whackers, lawn mowers, and leaf blowers can turn sunny suburban summer days into a buzzing confusion. Indeed, the entire universe is filled with the faint din that is the cosmic microwave background (CMB) radiation, leftover electromagnetic radiation from the Big Bang. The CMB was discovered when Penzias and Wilson (1965) went looking for the source of annoying hiss plaguing their new radio telescope, hiss that threatened to obscure signals from distant stars and galaxies. Noise seems to be entirely destructive, thus something to be eliminated, if possible. Noise can be beneficial, however, in at least two ways. One is familiar, the other paradoxical and far less well known. The familiar way is simply as a source of variety. For example, genes undergo random mutation from processes both external to the organism (e.g., cosmic rays) and internal (Dobrindt and Hacker, 2001). This genotypic variation is the source of heritable variation in phenotype, which is of course essential for the process of natural selection (Wagner, 2014). Phenotype can even vary within isogenic populations due to variation in gene expression (Fraser and Kaern, 2009). This phenotypic noise is thought to provide an evolutionary advantage for some microorganisms, as it increases the chance that some will survive under stressful conditions. The CMB noise, though destructive from the standpoint of the users of radio telescopes, plays a constructive role in generating the tiny variations in energy density in the early universe that are the seeds of structure formation. The random fluctuations we call noise gave rise to stars and galaxies and galactic clusters. This much is familiar, at least to those working in the relevant areas of biology or astrophysics. Considerably less familiar is the role that noise can play in nonlinear systems, in particular systems with one or more thresholds, points at which small differences in input give rise to disproportionate differences in output. Converting an analog signal into a digital signal involves sampling the signal at regular intervals and writing down a digital approximation of the amplitude at each point.",
author = "Steven Weinstein and Theodore Pavlic",
year = "2017",
month = "1",
day = "1",
doi = "10.1017/9781316584200.009",
language = "English (US)",
isbn = "9781107150539",
pages = "174--198",
booktitle = "From Matter to Life",
publisher = "Cambridge University Press",

}

TY - CHAP

T1 - Noise and function

AU - Weinstein, Steven

AU - Pavlic, Theodore

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We are surrounded by noise. The controlled explosions of internal combustion engines combine with the roar of rubber on asphalt to create the drone of road and highway traffic. Weed-whackers, lawn mowers, and leaf blowers can turn sunny suburban summer days into a buzzing confusion. Indeed, the entire universe is filled with the faint din that is the cosmic microwave background (CMB) radiation, leftover electromagnetic radiation from the Big Bang. The CMB was discovered when Penzias and Wilson (1965) went looking for the source of annoying hiss plaguing their new radio telescope, hiss that threatened to obscure signals from distant stars and galaxies. Noise seems to be entirely destructive, thus something to be eliminated, if possible. Noise can be beneficial, however, in at least two ways. One is familiar, the other paradoxical and far less well known. The familiar way is simply as a source of variety. For example, genes undergo random mutation from processes both external to the organism (e.g., cosmic rays) and internal (Dobrindt and Hacker, 2001). This genotypic variation is the source of heritable variation in phenotype, which is of course essential for the process of natural selection (Wagner, 2014). Phenotype can even vary within isogenic populations due to variation in gene expression (Fraser and Kaern, 2009). This phenotypic noise is thought to provide an evolutionary advantage for some microorganisms, as it increases the chance that some will survive under stressful conditions. The CMB noise, though destructive from the standpoint of the users of radio telescopes, plays a constructive role in generating the tiny variations in energy density in the early universe that are the seeds of structure formation. The random fluctuations we call noise gave rise to stars and galaxies and galactic clusters. This much is familiar, at least to those working in the relevant areas of biology or astrophysics. Considerably less familiar is the role that noise can play in nonlinear systems, in particular systems with one or more thresholds, points at which small differences in input give rise to disproportionate differences in output. Converting an analog signal into a digital signal involves sampling the signal at regular intervals and writing down a digital approximation of the amplitude at each point.

AB - We are surrounded by noise. The controlled explosions of internal combustion engines combine with the roar of rubber on asphalt to create the drone of road and highway traffic. Weed-whackers, lawn mowers, and leaf blowers can turn sunny suburban summer days into a buzzing confusion. Indeed, the entire universe is filled with the faint din that is the cosmic microwave background (CMB) radiation, leftover electromagnetic radiation from the Big Bang. The CMB was discovered when Penzias and Wilson (1965) went looking for the source of annoying hiss plaguing their new radio telescope, hiss that threatened to obscure signals from distant stars and galaxies. Noise seems to be entirely destructive, thus something to be eliminated, if possible. Noise can be beneficial, however, in at least two ways. One is familiar, the other paradoxical and far less well known. The familiar way is simply as a source of variety. For example, genes undergo random mutation from processes both external to the organism (e.g., cosmic rays) and internal (Dobrindt and Hacker, 2001). This genotypic variation is the source of heritable variation in phenotype, which is of course essential for the process of natural selection (Wagner, 2014). Phenotype can even vary within isogenic populations due to variation in gene expression (Fraser and Kaern, 2009). This phenotypic noise is thought to provide an evolutionary advantage for some microorganisms, as it increases the chance that some will survive under stressful conditions. The CMB noise, though destructive from the standpoint of the users of radio telescopes, plays a constructive role in generating the tiny variations in energy density in the early universe that are the seeds of structure formation. The random fluctuations we call noise gave rise to stars and galaxies and galactic clusters. This much is familiar, at least to those working in the relevant areas of biology or astrophysics. Considerably less familiar is the role that noise can play in nonlinear systems, in particular systems with one or more thresholds, points at which small differences in input give rise to disproportionate differences in output. Converting an analog signal into a digital signal involves sampling the signal at regular intervals and writing down a digital approximation of the amplitude at each point.

UR - http://www.scopus.com/inward/record.url?scp=85047528702&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047528702&partnerID=8YFLogxK

U2 - 10.1017/9781316584200.009

DO - 10.1017/9781316584200.009

M3 - Chapter

AN - SCOPUS:85047528702

SN - 9781107150539

SP - 174

EP - 198

BT - From Matter to Life

PB - Cambridge University Press

ER -