Abstract
Metal organic framework (MOF)-based electrode materials, which could be rapidly synthesized in ambient environment with low cost but also provide a remarkable high-energy density, are ideal candidates for developing high-performance and cost-effective supercapacitors. Herein, a facile room-temperature solution-phase based method is employed for fast and large-scale synthesis of Ni/Co-based MOFs with low crystallinity, which surprisingly exhibit extraordinary charge storage capability. In particular, the Ni2Co-MOF shows the highest structure disorder and the smallest nanosheet feature size among these MOFs, offers a specific capacity of 2149 mC cm−2 (or 1074.5 C g−1) at a discharge current of 1 mA cm−2, and 1654 mC cm−2 (or 827 C g−1) at 20 mA cm−2. Moreover, with Ni2Co-MOF as the positive electrode and activated carbon as the negative electrode, hybrid supercapacitors operating at 1.6 V deliver superior energy densities of 66.1 and 41.3 W h kg−1 at power densities of 800 and 8000 W kg−1, respectively. The findings in this study provide a promising electrode material for high-performance supercapacitors, and possibly break a new path toward MOF material synthesis in a cost-effective way but with outstanding charge storage capability.
Original language | English (US) |
---|---|
Article number | 146920 |
Journal | Applied Surface Science |
Volume | 528 |
DOIs | |
State | Published - Oct 30 2020 |
Externally published | Yes |
Keywords
- Electrode materials
- Hybrid supercapacitor
- Low crystallinity
- Metal organic framework
- Ni/Co-based MOFs
ASJC Scopus subject areas
- Chemistry(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Surfaces, Coatings and Films