New developments for integrated Schottky receivers in the terahertz regime

Jonathan R. Hoh, Christopher Groppi, Jose V. Siles

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Here we present the preliminary and final designs of a low-mass, low-power, highly integrated Schottky diode based coherent receiver system suitable for deployment on cubesat or other small satellite platforms. Currently, coherent Schottky receivers are far too large and consume too much power to be considered for deployment on any smaller forms of space-based satellites. Using an already existing design for a modular 520-600 GHz receiver designed at JPL, we have used novel packaging methods to condense this receiver into an integrated system. This integrated receiver has shown to have a volume and power consumption significantly smaller than the current state of the art. We will further present the designs of a similar integrated receiver for the first excited state of water vapor operating at the 1040-1200 GHz range. Finally, we discuss future plans for the combined mixer system and its potential for use in cubesat interferometry systems.

Original languageEnglish (US)
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
EditorsJonas Zmuidzinas, Jian-Rong Gao
PublisherSPIE
ISBN (Print)9781510619692
DOIs
StatePublished - 2018
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018 - Austin, United States
Duration: Jun 12 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10708
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX 2018
Country/TerritoryUnited States
CityAustin
Period6/12/186/15/18

Keywords

  • Astronomy
  • Cubesat
  • Heterodyne
  • Mixer
  • Molecular
  • Receiver
  • Satellite
  • Schottky
  • Vapor
  • Water

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'New developments for integrated Schottky receivers in the terahertz regime'. Together they form a unique fingerprint.

Cite this